A New Weight Adjusted Particle Swarm Optimization for Real-Time Multiple Object Tracking

被引:4
|
作者
Liu, Guang [1 ]
Chen, Zhenghao [1 ]
Yeung, Henry Wing Fung [1 ]
Chung, Yuk Ying [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, POB 24-60, Hsinchu 300, Taiwan
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II | 2016年 / 9948卷
关键词
Object tracking; Particle swarm optimization; Root sum squared errors; Multiple object tracking;
D O I
10.1007/978-3-319-46672-9_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel Weight Adjusted Particle Swarm Optimization (WAPSO) to overcome the occlusion problem and computational cost in multiple object tracking. To this end, a new update strategy of inertia weight of the particles in WAPSO is designed to maintain particle diversity and prevent pre-mature convergence. Meanwhile, the implementation of a mechanism that enlarges the search space upon the detection of occlusion enhances WAPSO's robustness to non-linear target motion. In addition, the choice of Root Sum Squared Errors as the fitness function further increases the speed of the proposed approach. The experimental results has shown that in combination with the model feature that enables initialization of multiple independent swarms, the high-speed WAPSO algorithm can be applied to multiple non-linear object tracking for real-time applications.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [31] Real-Time Torque Distribution Strategy for an Electric Vehicle with Multiple Traction Motors by Particle Swarm Optimization
    Yang, Yee-Pien
    Shih, Ying-Che
    Chen, Jia-Min
    2013 CACS INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2013, : 233 - 238
  • [32] Advances in real-time object tracking
    Moerwald, Thomas
    Prankl, Johann
    Zillich, Michael
    Vincze, Markus
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2015, 10 (04) : 683 - 697
  • [33] Real-Time Object Detection and Tracking
    Naeem, Hammad
    Ahmad, Jawad
    Tayyab, Muhammad
    2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2013, : 148 - 153
  • [34] A new structure of spatial filters for real-time object tracking
    Kunitani, S
    Kobayashi, K
    Mitsuhashi, W
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1433 - 1436
  • [35] Multiple Object Tracking for Fall Detection in Real-Time Surveillance System
    Lee, Young-Sook
    Lee, HoonJae
    11TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III, PROCEEDINGS,: UBIQUITOUS ICT CONVERGENCE MAKES LIFE BETTER!, 2009, : 2308 - 2312
  • [36] Real-time multiple object tracking using deep learning methods
    Dimitrios Meimetis
    Ioannis Daramouskas
    Isidoros Perikos
    Ioannis Hatzilygeroudis
    Neural Computing and Applications, 2023, 35 : 89 - 118
  • [37] Real-time interactive modeling and scalable multiple object tracking for AR
    Kim, Kiyoung
    Lepetit, Vincent
    Woo, Woontack
    COMPUTERS & GRAPHICS-UK, 2012, 36 (08): : 945 - 954
  • [38] Real-Time Multiple Object Visual Tracking for Embedded GPU Systems
    Fernandez-Sanjurjo, Mauro
    Mucientes, Manuel
    Brea, Victor Manuel
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (11) : 9177 - 9188
  • [39] Swarming Visual Sensor Network for Real-time Multiple Object Tracking
    Baranov, Yuri P.
    Yarishev, Sergey N.
    Medvedev, Roman V.
    REAL-TIME IMAGE AND VIDEO PROCESSING 2016, 2016, 9897
  • [40] Real-time multiple object tracking using deep learning methods
    Meimetis, Dimitrios
    Daramouskas, Ioannis
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 89 - 118