Detection of methyl salicylate using polymer-filled chemicapacitors

被引:26
|
作者
Patel, Sanjay V. [1 ]
Hobson, Stephen T. [1 ]
Cemalovic, Sabina [1 ]
Mlsna, Todd E. [1 ]
机构
[1] Seacoast Sci Inc, Carlsbad, CA 92011 USA
关键词
capacitance measurement; chemical transducers; methyl salicylate; microsensors; sensor array; Man-in-Simulant Test;
D O I
10.1016/j.talanta.2008.04.035
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Methyl salicylate (MeS) is used as a chemical warfare agent simulant to test chemical protective garments and other individual personal protective gear. The accurate and real-time detection of this analyte is advantageous for various testing regimes. This paper reports the results of MeS vapor exposures on polymer-filled capacitance-based sensors at temperatures ranging from 15 degrees C to 50 degrees C under dry and humid conditions. Multiple capacitors were arranged in an array on a silicon chip each having a different sorptive polymer. The sensors used parallel-plate electrode geometry to measure the dielectric permittivity changes of each polymer when exposed to water and MeS vapor. Of the four polymers tested against MeS, the optimal polymer displayed near or sub-parts-per-million detection limits at 35 degrees C (0-80%RH). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:872 / 877
页数:6
相关论文
共 50 条
  • [21] Simple micro-lens with polymer-filled trench in slab waveguide
    Tsukamoto, Koji
    Sugama, Akio
    Wakino, Yukiko
    Miyashita, Tomoko
    Kato, Masayuki
    Fujitsu Scientific and Technical Journal, 2002, 38 (01): : 54 - 63
  • [22] Enhanced photovoltaic performance of polymer-filled nanoporous Si hybrid structures
    Gang, Minjae
    Lee, Joo-Hyoung
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (07) : 5121 - 5126
  • [23] Athermal Silicon Arrayed Waveguide Grating with Polymer-Filled Slot Structure
    Wang, Xiang
    Xiao, Simiao
    Zheng, Weiwei
    Wang, Fan
    Hao, Yinlei
    Jiang, Xiaoqing
    Wang, Minghua
    Yang, Jianyi
    2008 5TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2008, : 253 - 255
  • [24] TECHNOLOGY OF UTILIZATION OF MULTILAYERED FOODSTUFF PACKAGING MATERIALS FOR PRODUCING POLYMER-FILLED COMPOSITES
    Nikolaikina, N. E.
    Skopintsev, I. V.
    Gonopolskii, A. A.
    CHEMICAL AND PETROLEUM ENGINEERING, 2010, 46 (3-4) : 178 - 182
  • [25] Wave propagation in the polymer-filled star-shaped honeycomb periodic structure
    Hsiang-Wen Tang
    Wei-Di Chou
    Lien-Wen Chen
    Applied Physics A, 2017, 123
  • [26] Dielectric constant of a polymer-filled nematic composite material: A numerical study.
    Janssen, RHC
    Gusev, AA
    Tervoort, TA
    Bastiaansen, CWM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U548 - U548
  • [27] Nonisothermal Crystallization Kinetics of AB2 Hyperbranched Polymer-Filled Polypropylene
    Liu, Guangtian
    Lei, Jing
    Wang, Fengyan
    POLYMER ENGINEERING AND SCIENCE, 2013, 53 (12): : 2535 - 2540
  • [28] Wave propagation in the polymer-filled star-shaped honeycomb periodic structure
    Tang, Hsiang-Wen
    Chou, Wei-Di
    Chen, Lien-Wen
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (08):
  • [29] Monitoring and characterization of the polymer-filled pores in sand using nuclear magnetic resonance during air-drying
    Wang, Ying
    Lu, Yi
    Liu, Jin
    Ma, Xiaofan
    Qi, Changqing
    Chen, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 337
  • [30] A NEW ROUTE TO POLYMER-FILLED GLASS - HYBRID INTERPENETRATING NETWORKS WITH APPRECIABLE TOUGHNESS
    SHARP, KG
    HYBRID ORGANIC-INORGANIC COMPOSITES, 1995, 585 : 163 - 180