Acceleration of diffusion in randomly switching potential with supersymmetry

被引:90
|
作者
Dubkov, AA
Spagnolo, B
机构
[1] Nizhni Novogorod State Univ, Radiophys Dept, Nizhnii Novgorod 603950, Russia
[2] Univ Palermo, INFM, CNR, I-90128 Palermo, Italy
[3] Univ Palermo, Dipartimento Fis Tecnol Relat, Grp Interdisciplinary Phys, I-90128 Palermo, Italy
关键词
D O I
10.1103/PhysRevE.72.041104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the overdamped Brownian motion in a supersymmetric periodic potential switched by Markovian dichotomous noise between two configurations. The two configurations differ from each other by a shift of one-half period. The calculation of the effective diffusion coefficient is reduced to the mean first passage time problem. We derive general equations to calculate the effective diffusion coefficient of Brownian particles moving in arbitrary supersymmetric potential. For the sawtooth potential, we obtain the exact expression for the effective diffusion coefficient, which is valid for the arbitrary mean rate of potential switchings and arbitrary intensity of white Gaussian noise. We find the acceleration of diffusion in comparison with the free diffusion case and a finite net diffusion in the absence of thermal noise. Such a potential could be used to enhance the diffusion over its free value by an appropriate choice of parameters.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] REGULARIZATION AND STABILIZATION OF RANDOMLY SWITCHING DYNAMIC SYSTEMS
    Yin, G.
    Zhao, Guangliang
    Wu, Fuke
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (05) : 1361 - 1382
  • [22] Influence of Randomly Varying Birefringence on Soliton Switching
    Hong Li
    Dejing Yin
    International Journal of Infrared and Millimeter Waves, 2001, 22 : 1335 - 1342
  • [23] Influence of randomly varying birefringence on soliton switching
    Li, H
    Yin, DJ
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2001, 22 (09): : 1335 - 1342
  • [24] On rendezvous control with randomly switching communication graphs
    Schenato, Luca
    Zampieri, Sandro
    NETWORKS AND HETEROGENEOUS MEDIA, 2007, 2 (04) : 627 - 646
  • [25] Evolution of a Fluctuating Population in a Randomly Switching Environment
    Wienand, Karl
    Frey, Erwin
    Mobilia, Mauro
    PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [26] RAY DIFFUSION IN A RANDOMLY INHOMOGENEOUS OCEAN
    WEINBERG, H
    MELLEN, RH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 55 : S57 - S57
  • [27] Diffusion in randomly perturbed dissipative dynamics
    Rodrigues, Christian S.
    Chechkin, Aleksei V.
    de Moura, Alessandro P. S.
    Grebogi, Celso
    Klages, Rainer
    EPL, 2014, 108 (04)
  • [28] Randomly flashing diffusion: Asymptotic properties
    Luczka, J
    Rudnicki, R
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 1149 - 1164
  • [29] ENERGY AND PARTICLE NUMBER SELF-DIFFUSION OF A CLASSICAL PARTICLE IN THE POTENTIAL OF RANDOMLY FIXED SCATTERERS
    LUCKE, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (06): : L113 - L119
  • [30] DIFFUSION OF CLUSTERS WITH RANDOMLY GROWING MASSES
    LUCZKA, J
    HANGGI, P
    GADOMSKI, A
    PHYSICAL REVIEW E, 1995, 51 (06): : 5762 - 5769