Efficiency of producing random unitary matrices with quantum circuits

被引:24
|
作者
Arnaud, Ludovic [1 ]
Braun, Daniel [1 ]
机构
[1] Univ Toulouse, CNRS, Phys Theor Lab, IRSAMC,UPS, F-31062 Toulouse, France
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 06期
关键词
information theory; quantum computing; quantum gates; quantum theory;
D O I
10.1103/PhysRevA.78.062329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the scaling of the convergence of several statistical properties of a recently introduced random unitary circuit ensemble towards their limits given by the circular unitary ensemble. Our study includes the full distribution of the absolute square of a matrix element, moments of that distribution up to order eight, as well as correlators containing up to 16 matrix elements in a given column of the unitary matrices. Our numerical scaling analysis shows that all of these quantities can be reproduced efficiently, with a number of random gates which scales at most as n(q)[ln(n(q)/epsilon)](nu) with the number of qubits n(q) for a given fixed precision epsilon and nu>0.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Random Unitary Matrices Associated to a Graph
    Kondratiuk, P.
    Zyczkowski, K.
    ACTA PHYSICA POLONICA A, 2013, 124 (06) : 1098 - 1105
  • [32] Quantum Circuits for the Unitary Permutation Problem
    Facchini, Stefano
    Perdrix, Simon
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 324 - 331
  • [33] Constructive quantum scaling of unitary matrices
    Glos, Adam
    Sadowski, Przemyslaw
    QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5145 - 5154
  • [34] DECOMPOSITION OF UNITARY MATRICES AND QUANTUM GATES
    Li, Chi-Kwong
    Roberts, Rebecca
    Yin, Xiaoyan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (01)
  • [35] Constructive quantum scaling of unitary matrices
    Adam Glos
    Przemysław Sadowski
    Quantum Information Processing, 2016, 15 : 5145 - 5154
  • [36] Scrambling in random unitary circuits: Exact results
    Bertini, Bruno
    Piroli, Lorenzo
    PHYSICAL REVIEW B, 2020, 102 (06)
  • [37] Direct dialling of Haar random unitary matrices
    Russell, Nicholas J.
    Chakhmakhchyan, Levon
    O'Brien, Jeremy L.
    Laing, Anthony
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [38] INVERTIBILITY OF RANDOM MATRICES: UNITARY AND ORTHOGONAL PERTURBATIONS
    Rudelson, Mark
    Vershynin, Roman
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (02) : 293 - 338
  • [39] Truncations of random unitary matrices and Young tableaux
    Novak, J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [40] Maximum of the Characteristic Polynomial of Random Unitary Matrices
    Arguin, Louis-Pierre
    Belius, David
    Bourgade, Paul
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 703 - 751