The NIEHS Predictive-Toxicology Evaluation Project

被引:60
|
作者
Bristol, DW [1 ]
Wachsman, JT [1 ]
Greenwell, A [1 ]
机构
[1] NIEHS, ENVIRONM TOXICOL PROGRAM, RES TRIANGLE PK, NC 27709 USA
关键词
predictive toxicology; carcinogenesis; decision support; hazard identification; activity classification; risk assessment; pattern recognition; human heuristic; expert system; machine learning; artificial intelligence;
D O I
10.1289/ehp.96104s51001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Predictive-Toxicology Evaluation (PTE) project conducts collaborative experiments that subject the performance of predictive-toxicology (PT) methods to rigorous, objective evaluation in a uniquely informative manner. Sponsored by the National Institute of Environmental Health Sciences, it takes advantage of the ongoing testing conducted by the U.S. National Toxicology Program (NTP) to estimate the true error of models that have been applied to make prospective predictions on previously untested, noncongeneric-chemical substances. The PTE project first identifies a group of standardized NTP chemical bioassays either scheduled to be conducted or are ongoing, but not yet complete. The project then announces and advertises the evaluation experiment, disseminates information about the chemical bioassays, and encourages researchers from a wide variety of disciplines to publish their predictions in peer-reviewed journals, using whatever approaches and methods they feel are best. A collection of such papers is published in this Environmental Health Perspectives Supplement, providing readers the opportunity to compare and contrast PT approaches and models, within the context of their prospective application to an actual-use situation. This introduction to this collection of papers on predictive toxicology summarizes the predictions made and the final results obtained for the 44 chemical carcinogenesis bioassays of the first PTE experiment (PTE-1) and presents information that identifies the 30 chemical carcinogenesis bioassays of PTE-2, along with a table of prediction sets that have been published to date. It also provides background about the origin and goals of the PTE project. outlines the special challenge associated with estimating the true error of models that aspire to predict open-system behavior, and summarizes what has been learned to date.
引用
收藏
页码:1001 / 1010
页数:10
相关论文
共 50 条
  • [41] Automating Predictive Toxicology Using ComptoxAI
    Romano, Joseph D.
    Hao, Yun
    Moore, Jason H.
    Penning, Trevor M.
    CHEMICAL RESEARCH IN TOXICOLOGY, 2022, 35 (08) : 1370 - 1382
  • [42] Computational Embryology and Predictive Toxicology of Hypospadias
    Leung, M. C. K.
    Hutson, M. S.
    Belmonte, J. M.
    Swat, M.
    Sipes, N.
    Baker, N. C.
    Spencer, R. M.
    Seifert, A. W.
    Perreault, S. D.
    Glazier, J. A.
    Knudsen, T. B.
    BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY, 2014, 100 (05) : 375 - 375
  • [43] Towards model governance in predictive toxicology
    Palczewska, Anna
    Fu, Xin
    Trundle, Paul
    Yang, Longzhi
    Neagu, Daniel
    Ridley, Mick
    Travis, Kim
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2013, 33 (03) : 567 - 582
  • [44] Collaborative development of predictive toxicology applications
    Hardy, Barry
    Douglas, Nicki
    Helma, Christoph
    Rautenberg, Micha
    Jeliazkova, Nina
    Jeliazkov, Vedrin
    Nikolova, Ivelina
    Benigni, Romualdo
    Tcheremenskaia, Olga
    Kramer, Stefan
    Girschick, Tobias
    Buchwald, Fabian
    Wicker, Joerg
    Karwath, Andreas
    Guetlein, Martin
    Maunz, Andreas
    Sarimveis, Haralambos
    Melagraki, Georgia
    Afantitis, Antreas
    Sopasakis, Pantelis
    Gallagher, David
    Poroikov, Vladimir
    Filimonov, Dmitry
    Zakharov, Alexey
    Lagunin, Alexey
    Gloriozova, Tatyana
    Novikov, Sergey
    Skvortsova, Natalia
    Druzhilovsky, Dmitry
    Chawla, Sunil
    Ghosh, Indira
    Ray, Surajit
    Patel, Hitesh
    Escher, Sylvia
    JOURNAL OF CHEMINFORMATICS, 2010, 2
  • [45] PREDICTIVE VALUE OF ANIMAL STUDIES IN TOXICOLOGY
    ZBINDEN, G
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 1991, 14 (02) : 167 - 177
  • [46] Strategies and challenges in predictive toxicology.
    Myatt, GJ
    Blower, PE
    Cross, KP
    Johnson, WP
    Yang, CH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U362 - U362
  • [47] Predictive toxicology using QSAR: A perspective
    Kar, Supratik
    Roy, Kunal
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2010, 87 (12) : 1455 - 1515
  • [48] Alternative animal models in predictive toxicology
    Khabib, Muhammad Nur Hamizan
    Sivasanku, Yogeethaa
    Lee, Hong Boon
    Kumar, Suresh
    Kue, Chin Siang
    TOXICOLOGY, 2022, 465
  • [49] Collaborative development of predictive toxicology applications
    Barry Hardy
    Nicki Douglas
    Christoph Helma
    Micha Rautenberg
    Nina Jeliazkova
    Vedrin Jeliazkov
    Ivelina Nikolova
    Romualdo Benigni
    Olga Tcheremenskaia
    Stefan Kramer
    Tobias Girschick
    Fabian Buchwald
    Joerg Wicker
    Andreas Karwath
    Martin Gütlein
    Andreas Maunz
    Haralambos Sarimveis
    Georgia Melagraki
    Antreas Afantitis
    Pantelis Sopasakis
    David Gallagher
    Vladimir Poroikov
    Dmitry Filimonov
    Alexey Zakharov
    Alexey Lagunin
    Tatyana Gloriozova
    Sergey Novikov
    Natalia Skvortsova
    Dmitry Druzhilovsky
    Sunil Chawla
    Indira Ghosh
    Surajit Ray
    Hitesh Patel
    Sylvia Escher
    Journal of Cheminformatics, 2
  • [50] Applying toxicogenomics in mechanistic and predictive toxicology
    Cunningham, ML
    Lehman-McKeeman, L
    TOXICOLOGICAL SCIENCES, 2005, 83 (02) : 205 - 206