Adaptive Reinforced Empirical Morlet Wavelet Transform and Its Application in Fault Diagnosis of Rotating Machinery

被引:18
|
作者
Xin, Yu [1 ]
Li, Shunming [1 ]
Zhang, Zongzhen [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Empirical wavelet transform; Morlet wavelet; spectral kurtosis; scale space representation; envelope spectrum; Pearson correlation coefficient; MODE DECOMPOSITION; SPECTRAL KURTOSIS; FEATURE-EXTRACTION; GEAR; SIGNAL;
D O I
10.1109/ACCESS.2019.2917042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying impact fault features from fault vibration signal is significantly meaningful for the fault diagnosis and condition monitoring of rotating machinery. Given defects and the working conditions, impact features are covered by background noise. A new method named empirical wavelet transform (EWT) has been receiving attention from the researchers and engineers. However, detecting boundaries by using the local maxima method from Fourier spectra and capturing the impact features through Meyer wavelet are the two crucial drawbacks of EWT. The former might be invalidated by the influence of non-stationary and noise frequency, and the latter is inappropriate for impact signal features. Therefore, reinforced empirical Morlet wavelet transform (REMWT) is proposed to overcome these shortcomings and efficiently diagnose fault features. In this method, the frequency spectrum boundaries are adaptively detected from the inner product of spectral kurtosis and Gaussian function via scale space representation, which can enhance the frequency character of impact features in vibration signals. Then, the constructed empirical Morlet wavelet serves as the adaptive filter bank for decomposing the signal into several empirical modes on the basis of spectrum boundaries. The meaningful component is selected via the maximum Pearson correlation coefficient method, and the envelope spectrum is used to accurately extract the fault features. The proposed method is then used to diagnose the fault features from the collected vibration signals. The results show its effectiveness and outstanding performance.
引用
下载
收藏
页码:65150 / 65162
页数:13
相关论文
共 50 条
  • [11] Graph constrained empirical wavelet transform and its application in bearing fault diagnosis
    Tan, Yuan
    Zhao, Shui
    Lv, Xiaorong
    Shao, Shifen
    Chen, Bingyan
    Fan, Xiyan
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [12] Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review
    Chen, Jinglong
    Li, Zipeng
    Pan, Jun
    Chen, Gaige
    Zi, Yanyang
    Yuan, Jing
    Chen, Binqiang
    He, Zhengjia
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 : 1 - 35
  • [13] An adaptive sensitive frequency band selection method for empirical wavelet transform and its application in bearing fault diagnosis
    Yu, Kun
    Lin, Tian Ran
    Tan, Jiwen
    Ma, Hui
    MEASUREMENT, 2019, 134 : 375 - 384
  • [14] The application of wavelet transform and artificial neural networks in machinery fault diagnosis
    Wu, YS
    Sun, Q
    Pan, XF
    Li, XL
    ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 1609 - 1612
  • [15] Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis
    Lin, J
    Qu, LS
    JOURNAL OF SOUND AND VIBRATION, 2000, 234 (01) : 135 - 148
  • [16] Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    Hu, Qiao
    He, Zhengjia
    Zhang, Zhousuo
    Zi, Yanyang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (02) : 688 - 705
  • [17] Element analysis and its application in rotating machinery fault diagnosis
    Dai, Hanfang
    Wang, Yanxue
    Wang, Xuan
    Liu, Qi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [18] Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition
    Lei, Yaguo
    Li, Naipeng
    Lin, Jing
    Wang, Sizhe
    SENSORS, 2013, 13 (12) : 16950 - 16964
  • [19] Application of adaptive convolutional neural network in rotating machinery fault diagnosis
    Li T.
    Duan L.
    Zhang D.
    Zhao S.
    Huang H.
    Bi C.
    Yuan Z.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (16): : 275 - 282and288
  • [20] Application of Wavelet Packet Analysis and Improved LSSVM on Rotating Machinery Fault Diagnosis
    Zhao, Lingling
    Yang, Kuihe
    2008 WORKSHOP ON POWER ELECTRONICS AND INTELLIGENT TRANSPORTATION SYSTEM, PROCEEDINGS, 2008, : 261 - 265