The shadow nature of positive and twisted quandle invariants of knots
被引:1
|
作者:
Kamada, Seiichi
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
Kamada, Seiichi
[1
]
Lebed, Victoria
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, OCAMI, Sumiyoshi Ku, Osaka 5588585, Japan
Univ Nantes, Henri Lebesgue Ctr, F-44322 Nantes 3, FranceOsaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
Lebed, Victoria
[2
,3
]
Tanaka, Kokoro
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Gakugei Univ, Dept Math, Koganei, Tokyo 1848501, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
Tanaka, Kokoro
[4
]
机构:
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Osaka City Univ, OCAMI, Sumiyoshi Ku, Osaka 5588585, Japan
[3] Univ Nantes, Henri Lebesgue Ctr, F-44322 Nantes 3, France
[4] Tokyo Gakugei Univ, Dept Math, Koganei, Tokyo 1848501, Japan
Quandle cocycle invariants form a powerful and well-developed tool in knot theory. This paper treats their variations-namely, positive and twisted quandle cocycle invariants, and shadow invariants. We interpret the former as particular cases of the latter. As an application, several constructions from the shadow world are extended to the positive and twisted cases. Another application is a sharpening of twisted quandle cocycle invariants for multi-component links.
机构:
Toshimagaoka Jyoshigakuen High Sch, I-25-22 Higashi Ikebukuro,Toshima Ku, Tokyo 1700013, JapanToshimagaoka Jyoshigakuen High Sch, I-25-22 Higashi Ikebukuro,Toshima Ku, Tokyo 1700013, Japan
Hashimoto, Yu
Tanaka, Kokoro
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Gakugei Univ, Dept Math, Nukuikita 4-1-1, Koganei, Tokyo 1848501, JapanToshimagaoka Jyoshigakuen High Sch, I-25-22 Higashi Ikebukuro,Toshima Ku, Tokyo 1700013, Japan