Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss

被引:81
|
作者
Zhang, Qian [1 ]
Castellanos-Rubio, Idoia [2 ]
Munshi, Rahul [2 ]
Orue, Inaki [3 ]
Pelaz, Beatriz [1 ]
Gries, Katharina Ines [1 ]
Parak, Wolfgang J. [1 ,4 ]
del Pino, Pablo [4 ]
Pralle, Arnd
机构
[1] Univ Marburg, Dept Phys, D-35032 Marburg, Germany
[2] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[3] F Ciencia & Tecnol, SGIker Medidas Magnet, Leioa 48940, Spain
[4] CIC BiomaGUNE, San Sebastian 20009, Spain
关键词
SINGLE-DOMAIN PARTICLES; CUBIC ANISOTROPY; TEMPERATURE-DEPENDENCE; ENERGY; MAGNETOSTRICTION; RELAXATION; REMANENCE; RESONANCE; ORIGIN; LOOPS;
D O I
10.1021/acs.chemmater.5b03261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study provides a guide to maximizing hysteretic loss by matching the design and synthesis of superparamagnetic nanoparticles to the desired hyperthermia application. The maximal heat release from magnetic nanoparticles to the environment depends on intrinsic properties of magnetic nanoparticles (e.g., size, magnetization, and magnetic anisotropy) and extrinsic properties of the applied fields (e.g., frequency and field strength). Often, the biomedical hyperthermia application limits flexibility in settings of many parameters (e.g., nanoparticle size and mobility, field strength, and frequency). We show that core shell nanoparticles combining a soft (Mn ferrite) and a hard (Co ferrite) magnetic material form a system in which the effective magnetic anisotropy can be easily tuned independently of the nanoparticle size. A theoretical framework to include the crystal anisotropy contribution of the Co ferrite phase to the nanoparticle's total anisotropy is developed. The experimental results confirm that this framework predicts the hysteretic heating loss correctly when including nonlinear effects in an effective susceptibility. Hence, we provide a guide on how to characterize the magnetic anisotropy of core-shell magnetic nanoparticles, model the expected heat loss, and thereby synthesize tuned nanoparticles for a particular biomedical application.
引用
收藏
页码:7380 / 7387
页数:8
相关论文
共 50 条
  • [21] Exchange-Coupled Bimagnetic Wustite/Metal Ferrite Core/Shell Nanocrystals: Size, Shape, and Compositional Control
    Bodnarchuk, Maryna I.
    Kovalenko, Maksym V.
    Groiss, Heiko
    Resel, Roland
    Reissner, Michael
    Hesser, Guenter
    Lechner, Rainer T.
    Steiner, Walter
    Schaeffler, Friedrich
    Heiss, Wolfgang
    [J]. SMALL, 2009, 5 (20) : 2247 - 2252
  • [22] Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance
    Darwish, Mohamed S. A.
    Kim, Hohyeon
    Lee, Hwangjae
    Ryu, Chiseon
    Lee, Jae Young
    Yoon, Jungwon
    [J]. NANOMATERIALS, 2020, 10 (05)
  • [23] Asymmetric hysteresis loops and its dependence on magnetic anisotropy in exchange biased Co/CoO core-shell nanoparticles
    Chandra, Sayan
    Khurshid, Hafsa
    Manh-Huong Phan
    Srikanth, Hariharan
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (23)
  • [24] Exchange-bias and exchange-spring coupling in magnetic core-shell nanoparticles
    Soares, J. M.
    Galdino, V. B.
    Machado, F. L. A.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 350 : 69 - 72
  • [25] Geometric effects in cylindrical core/shell hard-soft exchange-coupled magnetic nanostructures
    Kim, Namkyu
    Han, Hee-Sung
    Lee, Sooseok
    Kim, Min-Ji
    Jung, Dae-Han
    Kang, Myeonghawn
    Ok, Hyejin
    Son, Youngkyun
    Lee, Sukbin
    Lee, Ki-Suk
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 523
  • [26] Magnetic couplings and superparamagnetic properties in core-shell structured spinel ferrite nanoparticles.
    Samia, ASC
    Zhang, ZJ
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U684 - U684
  • [27] On the synthesis of bi-magnetic manganese ferrite-based core-shell nanoparticles
    Angotzi, Marco Sanna
    Mameli, Valentina
    Cara, Claudio
    Peddis, Davide
    Xin, Huolin L.
    Sangregorio, Claudio
    Mercuri, Maria Laura
    Cannas, Carla
    [J]. NANOSCALE ADVANCES, 2021, 3 (06): : 1612 - 1623
  • [28] Tuning the magnetic anisotropy in coordination nanoparticles: random distribution versus core-shell architecture
    Prado, Yoann
    Dia, Nada
    Lisnard, Laurent
    Rogez, Guillaume
    Brisset, Francois
    Catala, Laure
    Mallah, Talal
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (93) : 11455 - 11457
  • [29] Magnetic anisotropy and interface exchange coupling dependence of exchange bias in core/shell doubly inverted magnetic nanoparticles
    Vatansever, Z. D.
    Yuksel, Y.
    Vatansever, E.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (36)
  • [30] Core-shell structured superparamagnetic Zn-Mg ferrite nanoparticles for magnetic hyperthermia applications
    Somvanshi, Sandeep B.
    Jadhav, Swapnil A.
    Gawali, Sudarshan S.
    Zakde, Kranti
    Jadhav, K. M.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947