High-Throughput Microfluidic Single-Cell Digital Polymerase Chain Reaction

被引:74
|
作者
White, A. K. [1 ]
Heyries, K. A. [1 ]
Doolin, C. [2 ]
VanInsberghe, M. [1 ]
Hansen, C. L. [1 ,2 ]
机构
[1] Univ British Columbia, Ctr High Throughput Biol, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
HEMATOPOIETIC STEM-CELLS; MESSENGER-RNA; PCR; DNA; HETEROGENEITY; TRANSCRIPTOME; MICRORNAS; NUMBER; STATES;
D O I
10.1021/ac400896j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118 900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204 000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
引用
收藏
页码:7182 / 7190
页数:9
相关论文
共 50 条
  • [41] High-throughput single-cell tracking in real time
    Vanek, PG
    Tunon, P
    GENETIC ENGINEERING NEWS, 2002, 22 (13): : 34 - +
  • [42] High-Throughput Secondary Screening at the Single-Cell Level
    Robinson, J. Paul
    Patsekin, Valery
    Holdman, Cheryl
    Ragheb, Kathy
    Sturgis, Jennifer
    Fatig, Ray
    Avramova, Larisa V.
    Rajwa, Bartek
    Davisson, V. Jo
    Lewis, Nicole
    Narayanan, Padma
    Li, Nianyu
    Qualls, C. W., Jr.
    JALA, 2013, 18 (01): : 85 - 98
  • [43] High-Throughput Single-Cell Manipulation in Brain Tissue
    Steinmeyer, Joseph D.
    Yanik, Mehmet Fatih
    PLOS ONE, 2012, 7 (04):
  • [44] Acoustic tweezers for high-throughput single-cell analysis
    Yang, Shujie
    Rufo, Joseph
    Zhong, Ruoyu
    Rich, Joseph
    Wang, Zeyu
    Lee, Luke P. P.
    Huang, Tony Jun
    NATURE PROTOCOLS, 2023, 18 (08) : 2441 - 2458
  • [45] Automatic thresholding method for high-throughput digital polymerase chain reaction fluorescence images with uneven illumination
    Yu, Yue
    Zhu, Qin
    Chen, Lin
    Zhang, Xuyang
    Tang, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (02)
  • [46] High-Throughput Single-Cell Sequencing with Linear Amplification
    Yin, Yi
    Jiang, Yue
    Lam, Kwan-Wood Gabriel
    Berletch, Joel B.
    Disteche, Christine M.
    Noble, William S.
    Steemers, Frank J.
    Camerini-Otero, R. Daniel
    Adey, Andrew C.
    Shendure, Jay
    MOLECULAR CELL, 2019, 76 (04) : 676 - +
  • [47] Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity
    Peham, Johannes R.
    Grienauer, Walter
    Steiner, Hannes
    Heer, Rudolf
    Vellekoop, Michael J.
    Noehammer, Christa
    Wiesinger-Mayr, Herbert
    BIOMEDICAL MICRODEVICES, 2011, 13 (03) : 463 - 473
  • [48] Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity
    Johannes R. Peham
    Walter Grienauer
    Hannes Steiner
    Rudolf Heer
    Michael J. Vellekoop
    Christa Nöhammer
    Herbert Wiesinger-Mayr
    Biomedical Microdevices, 2011, 13 : 463 - 473
  • [49] A novel, microfluidic high-throughput single-cell encapsulation of human bone marrow mesenchymal stromal cells
    Rashidi, Narjes
    Slater, Alex
    Peregrino, Giordana
    Santin, Matteo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2024, 35 (01)
  • [50] Advance of microfluidic flow cytometry enabling high-throughput characterization of single-cell electrical and structural properties
    Huang, Xukun
    Chen, Xiao
    Tan, Huiwen
    Wang, Minruihong
    Li, Yimin
    Wei, Yuanchen
    Zhang, Jie
    Chen, Deyong
    Wang, Junbo
    Li, Yueying
    Chen, Jian
    CYTOMETRY PART A, 2024, 105 (02) : 139 - 145