Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks

被引:185
|
作者
Skaria, Sruthy [1 ]
Al-Hourani, Akram [1 ]
Lech, Margaret [1 ]
Evans, Robin J. [2 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
关键词
Radar sensors; deep convolutional neural networks; radar signal processing; hand-gesture recognition; Doppler radar; multi-antenna radar; millimeter-wave radar; CLASSIFICATION;
D O I
10.1109/JSEN.2019.2892073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low cost consumer radar integrated circuits combined with recent advances in machine learning have opened up a range of new possibilities in smart sensing. In this paper, we use a miniature radar sensor to capture Doppler signatures of 14 different hand gestures and train a deep convolutional neural network (DCNN) to classify these captured gestures. We utilize two receiving antennas of a continuous-wave Doppler radar capable of producing the in-phase and quadrature components of the heat signals. We map these two heat signals into three input channels of a DCNN as two spectrograms and an angle of arrival matrix. The classification results of the proposed architecture show a gesture classification accuracy exceeding 95% and a very low confusion between different gestures. This is almost 10% improvement over the single-channel Doppler methods reported in the literature.
引用
收藏
页码:3041 / 3048
页数:8
相关论文
共 50 条
  • [21] Static Hand Gesture Recognition Based on Convolutional Neural Networks
    Pinto, Raimundo F., Jr.
    Borges, Carlos D. B.
    Almeida, Antonio M. A.
    Paula, Alis C., Jr.
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2019, 2019
  • [22] Hand Gesture Recognition using Neural Networks
    Murthy, G. R. S.
    Jadon, R. S.
    2010 IEEE 2ND INTERNATIONAL ADVANCE COMPUTING CONFERENCE, 2010, : 134 - 138
  • [23] Hand Gesture Recognition Based-on Convolutional Neural Network Using a Bistatic Radar System
    He, Kaixuan
    Yang, Zhaocheng
    Zhuang, Luntao
    Zheng, Xinbo
    ELEVENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 11384
  • [24] Touchless Recognition of Hand Gesture Digits and English Characters Using Convolutional Neural Networks
    Peshin, Ujjwal
    Jha, Tanay
    Kantival, Shivam
    MACHINE LEARNING FOR NETWORKING, 2019, 11407 : 212 - 221
  • [25] Deep Convolutional Spiking Neural Network Based Hand Gesture Recognition
    Ke, Weijie
    Xing, Yannan
    Di Caterina, Gaetano
    Petropoulakis, Lykourgos
    Soraghan, John
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Hand gesture recognition based on micro-Doppler radar using graph neural network
    Xiong, Zhangjin
    Ma, Kaixue
    Yan, Ningning
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [27] Semantic Segmentation based Hand Gesture Recognition using Deep Neural Networks
    Dutta, H. Pallab Jyoti
    Sarma, Debajit
    Bhuyan, M. K.
    Laskar, R. H.
    2020 TWENTY SIXTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC 2020), 2020,
  • [28] Hand Gesture Recognition Using IR-UWB Radar with Spiking Neural Networks
    Wang, Shule
    Yan, Yulong
    Chu, Haoming
    Hu, Guangxi
    Zhang, Zhi
    Zou, Zhuo
    Zheng, Lirong
    2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 423 - 426
  • [29] Deep Hand Gesture Recognition: A Wavelet Scattering Alternative to Convolutional Networks
    Al-Jumaily, Adel
    Khushaba, Rami N.
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 438 - 442
  • [30] Hand Gesture Recognition with 3D Convolutional Neural Networks
    Molchanov, Pavlo
    Gupta, Shalini
    Kim, Kihwan
    Kautz, Jan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2015,