Maximal entanglement in high energy physics

被引:60
|
作者
Cervera-Lierta, Alba [1 ]
Latorre, Jose I. [1 ,2 ]
Rojo, Juan [3 ,4 ]
Rottoli, Luca [5 ]
机构
[1] Univ Barcelona, Dept Fis Quant & Astrofis, Diagonal 645, Barcelona 08028, Spain
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[3] Vrije Univ Amsterdam, Dept Phys & Astron, Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[4] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[5] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England
来源
SCIPOST PHYSICS | 2017年 / 3卷 / 05期
关键词
QUANTUM-INFORMATION; ENTROPY; THEOREM;
D O I
10.21468/SciPostPhys.3.5.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) s-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii) the indistinguishable superposition between t- and u-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows to reproduce QED. For Z-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle theta(W). Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] High energy physics in 2012
    Rajasekaran, G.
    CURRENT SCIENCE, 2012, 103 (03): : 250 - 251
  • [32] HIGH-ENERGY PHYSICS
    CREUTZ, M
    PHYSICS TODAY, 1983, 36 (05) : 35 - 42
  • [33] Physics at the High Energy Frontier
    Padley, P.
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 123 - 128
  • [34] DPR in High Energy Physics
    Gao, Wenxue
    Kugel, Andreas
    Maenner, Reinhard
    Abel, Norbert
    Meier, Nick
    Kebschull, Udo
    DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 39 - +
  • [35] Computing in high energy physics
    Fisk, IM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (14): : 3021 - 3032
  • [36] High Energy Physics - Phenomenology
    Quevedo, Fernando
    NUCLEAR PHYSICS B, 2024, 1006
  • [37] HIGH-ENERGY PHYSICS
    CREUTZ, M
    USPEKHI FIZICHESKIKH NAUK, 1984, 143 (02): : 256 - 265
  • [38] Networks for high energy physics
    Newman, H.B.
    Computer Physics Communications, 1989, 57 (1-3)
  • [39] Networking for high energy physics
    Newman, H. B.
    Mughal, A.
    Kassymkhanova, I.
    Bunn, J.
    Voicu, R.
    Lapadatescu, V.
    Kcira, D.
    GRID AND CLOUD COMPUTING: CONCEPTS AND PRACTICAL APPLICATIONS, 2016, 192 : 205 - 260
  • [40] HIGH-ENERGY PHYSICS
    SNOW, G
    SCIENCE, 1964, 146 (364) : 809 - &