Parallel Inversion of 1D Magnetotelluric Data Using Particle Swarm Optimization Algorithm

被引:0
|
作者
Xiong, Jie [1 ]
Meng, Xiaohong [1 ]
机构
[1] China Univ Geosci, Sch Geophys & Informat Technol, Beijing, Peoples R China
关键词
parallel inversion; 1D magnetotelluric data; particle swarm optimization;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The inversion of magnetotelluric data is a multi-parameter, nonlinear, and multimodal optimization problem. Particle swarm optimization (PSO) algorithm, which was developed by enlightenment of the behavior of birds in looking for food, is the fine solver for this geophysical inversion problem. As the forward problem becomes complex, the inversion becomes much more slow. We proposed a parallel PSO inversion algorithm to speedup the inversion of 1D magnetotelluric data. The numerical results show that the parallel PSO algorithm can speedup the inversion effectively and ensure the solution accuracy.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 50 条
  • [31] AVA Simultaneous Inversion of Prestack Seismic Data Using Particle Swarm Optimization
    Zhang, Jin
    Shen, Peng
    Zhao, Weina
    Guo, Xubing
    Wang, Xing
    Chen, Song
    Xu, Xiugang
    JOURNAL OF EARTH SCIENCE, 2018, 29 (06) : 1390 - 1397
  • [32] AVA Simultaneous Inversion of Prestack Seismic Data Using Particle Swarm Optimization
    Jin Zhang
    Peng Shen
    Weina Zhao
    Xubing Guo
    Xing Wang
    Song Chen
    Xiugang Xu
    Journal of Earth Science, 2018, 29 : 1390 - 1397
  • [33] AVA Simultaneous Inversion of Prestack Seismic Data Using Particle Swarm Optimization
    Jin Zhang
    Peng Shen
    Weina Zhao
    Xubing Guo
    Xing Wang
    Song Chen
    Xiugang Xu
    Journal of Earth Science, 2018, 29 (06) : 1390 - 1397
  • [34] AVA Simultaneous Inversion of Prestack Seismic Data Using Particle Swarm Optimization
    Jin Zhang
    Peng Shen
    Weina Zhao
    Xubing Guo
    Xing Wang
    Song Chen
    Xiugang Xu
    Journal of Earth Science, 2018, (06) : 1390 - 1397
  • [35] Multi-objective Optimization of Parallel Manipulators using a Particle Swarm Algorithm
    Lopes, Antonio M.
    Freire, Helio
    De Moura Oliveira, P. B.
    Solteiro Pires, E. J.
    Reis, Cecilia
    NEW ASPECTS OF APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS AND INFORMATICS AND COMMUNICATION, 2010, : 103 - +
  • [36] Parallel rapid relaxation inversion of 3D magnetotelluric data
    Changhong Lin
    Handong Tan
    Tuo Tong
    Applied Geophysics, 2009, 6 : 77 - 83
  • [37] Parallel rapid relaxation inversion of 3D magnetotelluric data
    Lin Changhong
    Tan Handong
    Tong Tuo
    APPLIED GEOPHYSICS, 2009, 6 (01) : 77 - 83
  • [38] Internet Traffic Data Categorization Using Particle of Swarm Optimization Algorithm
    Shrivastava, Nikita
    Dubey, Amit
    2016 SYMPOSIUM ON COLOSSAL DATA ANALYSIS AND NETWORKING (CDAN), 2016,
  • [39] NEW APPROACHES TO CLUSTERING DATA Using the Particle Swarm Optimization Algorithm
    Abdalla Esmin, Ahmed Ali
    Pereira, Dilson Lucas
    ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2008, : 593 - 597
  • [40] Evidencing Fluid Migration of the Crust during the Seismic Swarm by Using 1D Magnetotelluric Monitoring
    Vargas, Carlos A.
    Caneva, Alexander
    Solano, Juan M.
    Gulisano, Adriana M.
    Villalobos, Jaime
    APPLIED SCIENCES-BASEL, 2023, 13 (04):