Multiple solutions for a quasilinear Schrodinger equation

被引:155
|
作者
Fang, Xiang-Dong [1 ]
Szulkin, Andrzej [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Quasilinear Schrodinger equation; Multiplicity of solutions; Nehari manifold; SOLITON-SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jde.2012.11.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the quasilinear Schrodinger equation -Delta u + V(x)u - Delta(u(2))u = g(x, u), x is an element of R-N, where g and V are periodic in x(1), ... , x(N) and g is odd in u, subcritical and satisfies a monotonicity condition. We employ the approach developed in Szulkin and Weth (2009, 2010) [15,16] and obtain infinitely many geometrically distinct solutions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2015 / 2032
页数:18
相关论文
共 50 条
  • [1] Multiple Solutions for a Quasilinear Schrodinger Equation on RN
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) : 91 - 117
  • [2] MULTIPLE SOLITON SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATION
    Liu, Jiayin
    Liu, Duchao
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 75 - 90
  • [3] Multiple solutions to a quasilinear Schrodinger equation with Robin boundary condition
    Deng, Yin
    Jia, Gao
    Li, Fanglan
    [J]. AIMS MATHEMATICS, 2020, 5 (04): : 3825 - 3839
  • [4] Multiple radial and nonradial normalized solutions for a quasilinear Schrodinger equation
    Yang, Xianyong
    Tang, Xianhua
    Cheng, Bitao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [5] SOLITON SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATION
    Liu, Duchao
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [6] Multiple minimal nodal solutions for a quasilinear Schrodinger equation with symmetric potential
    Furtado, MF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 170 - 188
  • [7] Existence of positive solutions for a quasilinear Schrodinger equation
    Chu, Changmu
    Liu, Haidong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 118 - 127
  • [8] Ground state solutions for the quasilinear Schrodinger equation
    Guo, Yuxia
    Tang, Zhongwei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3235 - 3248
  • [9] Nonexistence of stable solutions for quasilinear Schrodinger equation
    Chen, Lijuan
    Chen, Caisheng
    Yang, Hongwei
    Song, Hongxue
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [10] Ground State Solutions for a Quasilinear Schrodinger Equation
    Zhang, Jian
    Lin, Xiaoyan
    Tang, Xianhua
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)