On the geometry of isomonodromic deformations

被引:10
|
作者
Hurtubise, Jacques [1 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hamiltonian systems; Isomonodromic deformations; Connections over a Riemann surface;
D O I
10.1016/j.geomphys.2008.05.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note examines the geometry behind the Hamiltonian structure of isomonodromy deformations of connections on vector bundles over Riemann surfaces. The main point is that one should think of an open set of the moduli of pairs (V, del) of vector bundles and connections as being obtained by "twists" supported over points of a fixed vector bundle V-0 with a fixed connection del(0); this gives two deformations, one, isomonodromic, of (V, del), and another induced from the isomonodromic deformation of (del(0). del(0)). The difference between the two will be Hamiltonian. (C) 2008 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1394 / 1406
页数:13
相关论文
共 50 条
  • [21] Quantum Spectral Problems and Isomonodromic Deformations
    Bershtein, Mikhail
    Gavrylenko, Pavlo
    Grassi, Alba
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (01) : 347 - 418
  • [22] Flat Structure on the Space of Isomonodromic Deformations
    Kato, Mitsuo
    Mano, Toshiyuki
    Sekiguchi, Jiro
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [23] Quantum Spectral Problems and Isomonodromic Deformations
    Mikhail Bershtein
    Pavlo Gavrylenko
    Alba Grassi
    Communications in Mathematical Physics, 2022, 393 (1) : 347 - 418
  • [24] Schlesinger transformations for elliptic isomonodromic deformations
    Korotkin, D
    Manojlovic, N
    Samtleben, H
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3125 - 3141
  • [25] Isomonodromic Deformations: Confluence, Reduction and Quantisation
    Gaiur, Ilia
    Mazzocco, Marta
    Rubtsov, Vladimir
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) : 1385 - 1461
  • [26] Isomonodromic deformations of Heun and Painlevé equations
    S. Yu. Slavyanov
    Theoretical and Mathematical Physics, 2000, 123 : 744 - 753
  • [27] Differential Galois Theory and Isomonodromic Deformations
    Blazquez Sanz, David
    Casale, Guy
    Diaz Arboleda, Juan Sebastian
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [28] Isomonodromic deformations of logarithmic connections and stability
    Indranil Biswas
    Viktoria Heu
    Jacques Hurtubise
    Mathematische Annalen, 2016, 366 : 121 - 140
  • [29] The work of Andrey Bolibrukh on isomonodromic deformations
    Sabbah, Claude
    Differential Equations and Quantum Groups: ANDREY A. BOLIBRUKH MEMORIAL VOLUME, 2007, 9 : 9 - 25
  • [30] Isomonodromic deformations and supersymmetric gauge theories
    Takasaki, K
    Nakatsu, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (31): : 5505 - 5518