The temporal evolution of the strain rate on a turbulent premixed flame was measured experimentally using cinema-stereoscopic particle image velocimetry. Turbulence strains a flame due to velocity gradients associated both directly with the turbulence and those caused by the hydrodynamic instability, which are initiated by the turbulence. The development of flame wrinkles caused by both of these mechanisms was observed. Wrinkles generated by the turbulence formed around vortical Structures, which passed through the flame and were attenuated. After the turbulent structures had passed, the hydrodynamic instability flow pattern developed and caused additional strain. The hydrodynamic instability also caused the growth of small flame front perturbations into large wrinkles. fit the moderately turbulent flame investigated, it was found that the evolution of the strain rate caused by turbulence-flame interactions followed a common pattern involving three temporal regimes. In the first, the turbulence exerted extensive (positive) strain oil the flame, creating a wrinkle that had negative curvature (concave towards the reactants). This was followed by a transition period, leading into the third regime in which the flow pattern and strain rate were dominated by the hydrodynamic instability mechanism. It was also found that file magnitudes of the strain rate in the first and third regimes were similar. Hence, the hydrodynamic instability mechanism caused significant strain on a flame and should be included in turbulent combustion models. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.