Online tracking of deformable objects under occlusion using dominant points

被引:8
|
作者
Prasad, Dilip K. [1 ]
Brown, Michael S. [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
关键词
POLYGONAL-APPROXIMATION; CURVES; MOTION;
D O I
10.1364/JOSAA.30.001484
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper deals with tracking of deformable objects in the presence of occlusion using dominant point representation of the boundary contour. A novel nonintegral time propagation model for propagating the dominant points is proposed. It uses an initial guess generated from a linear operation and an analytical conjugate gradient approach for online robust learning of the shape deformation and motion model. A scheme is presented to automatically detect and correct the region of large local deformation. In order to deal with occlusion, admissible restrictions on deformation and motion of the object are automatically determined. The proposed method overcomes the need of offline learning and learns the deformation and motion model of the object using very few initial frames of the input video. The performance of the method is demonstrated using varieties of videos of different objects. (C) 2013 Optical Society of America
引用
收藏
页码:1484 / 1491
页数:8
相关论文
共 50 条
  • [41] Salient points for tracking moving objects in video
    Kamath, C
    Gezahegne, A
    Newsam, S
    Roberts, GM
    IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2005, PTS 1 AND 2, 2005, 5685 : 442 - 453
  • [42] Multiple object tracking with partial occlusion handling using salient feature points
    Ali, M. M. Naushad
    Abdullah-Al-Wadud, M.
    Lee, Seok-Lyong
    INFORMATION SCIENCES, 2014, 278 : 448 - 465
  • [43] RGB-D Tracking and Optimal Perception of Deformable Objects
    Cuiral-Zueco, Ignacio
    Lopez-Nicolas, Gonzalo
    IEEE ACCESS, 2020, 8 : 136884 - 136897
  • [44] Tracking 3D Deformable Objects in Real Time
    Silva, Tiago
    Magalhaes, Luis
    Ferreira, Manuel
    Khanal, Salik Ram
    Silva, Jorge
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 823 - 830
  • [45] MULTIPLE CUE ADAPTIVE TRACKING OF DEFORMABLE OBJECTS WITH PARTICLE FILTER
    Dore, Alessio
    Beoldo, Andrea
    Regazzoni, Carlo S.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 237 - 240
  • [46] HYBRID STRUCTURE HYPERGRAPH FOR ONLINE DEFORMABLE OBJECT TRACKING
    Li, Shengkun
    Du, Dawei
    Wen, Longyin
    Chang, Ming-Ching
    Lyu, Siwei
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1127 - 1131
  • [47] Deformable regions of interest with multiple points for tissue tracking in echocardiography
    Cui, Xiaoke
    Washio, Takumi
    Chono, Tomoaki
    Baba, Hirotaka
    Okada, Jun-Ichi
    Sugiura, Seiryo
    Hisada, Toshiaki
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 554 - 569
  • [48] Using neural network to learn spatial-temporal models for moving deformable objects tracking
    Xu, LQ
    Hogg, DC
    INTERNATIONAL WORKSHOP ON NEURAL NETWORKS FOR IDENTIFICATION, CONTROL, ROBOTICS, AND SIGNAL/IMAGE PROCESSING - PROCEEDINGS, 1996, : 145 - 153
  • [49] Deformable Linear Objects Manipulation With Online Model Parameters Estimation
    Caporali, Alessio
    Kicki, Piotr
    Galassi, Kevin
    Zanella, Riccardo
    Walas, Krzysztof
    Palli, Gianluca
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03): : 2598 - 2605
  • [50] Online Model Learning for Shape Control of Deformable Linear Objects
    Yang, Yuxuan
    Stork, Johannes A.
    Stoyanov, Todor
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4056 - 4062