Optimal Kernel in a Class of Kernels with an Invariant Metric

被引:0
|
作者
Tanaka, Akira [1 ]
Imai, Hideyuki [1 ]
Kudo, Mineichi [1 ]
Miyakoshi, Masaaki [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Div Comp Sci, Sapporo, Hokkaido 0600814, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning based oil kernel machines is widely known as a, powerful tool for various fields of information science such as pattern recog nition and regression estimation. One of central topics of kernel machines is model selection, especially selection of a kernel or its parameters. In this paper, we consider a. class of kernels that forms a monotonic classes of reproducing kernel Hilbert spaces with an invariant metric and show that the kernel corresponding to the smallest reproducing kernel Hilbert space including an unknown true function gives the optimal model for the unknown true function.
引用
收藏
页码:530 / 539
页数:10
相关论文
共 50 条
  • [31] Class-based kernels selection for albedo inversion by kernel-driven BRDF model
    Zhang, H
    Yang, H
    Jiao, ZT
    Li, XW
    Wang, JD
    Ding, X
    Liu, JB
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3872 - 3874
  • [32] Optimal spaces for the S′-convolution with the Marcel!Riesz kernels and the N-dimensional Hilbert kernel
    Alvarez, J
    Carton-Lebrun, C
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 233 - 248
  • [33] Optimal parameter choice for a class of cubic interpolation kernels and the associated error analysis
    Aggarwal, M
    Gadre, V
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 723 - 726
  • [34] Finite dimensional backward shift invariant subspaces of a class of reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (05): : 321 - 334
  • [35] Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity
    Jimenez, Jose Beltran
    de Andres, Daniel
    Delhom, Adria
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (22)
  • [36] Multiple kernel clustering with corrupted kernels
    Li, Teng
    Dou, Yong
    Liu, Xinwang
    Zhao, Yang
    Lv, Qi
    NEUROCOMPUTING, 2017, 267 : 447 - 454
  • [37] HEAT KERNELS OF METRIC TREES AND APPLICATIONS
    Frank, Rupert L.
    Kovarik, Hynek
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1027 - 1046
  • [38] On kernels and nuclei of rank metric codes
    Lunardon, Guglielmo
    Trombetti, Rocco
    Zhou, Yue
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (02) : 313 - 340
  • [39] Robust kernels for kernel density estimation
    Wang, Shaoping
    Li, Ang
    Wen, Kuangyu
    Wu, Ximing
    ECONOMICS LETTERS, 2020, 191
  • [40] Fisher information metric and Poisson kernels
    Itoh, Mitsuhiro
    Shishido, Yuichi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (04) : 347 - 356