A Hybrid Approach for Improving the Data Quality of Mobile Phone Sensing

被引:3
|
作者
Min, Hong [1 ]
Scheuermann, Peter [2 ]
Heo, Junyoung [3 ]
机构
[1] Hoseo Univ, Dept Comp Engn, Asan 336795, Chungnam, South Korea
[2] Northwestern Univ, Inst Technol, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[3] Hansung Univ, Dept Comp Engn, Seoul 136792, South Korea
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
SPATIAL INTERPOLATION; SENSOR;
D O I
10.1155/2013/786594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few studies have researched the temporal and spatial effects of insufficient exposure of sensors in mobile phone sensing. In this paper, the missing data problem in mobile phone sensing is addressed by using a hybrid approach to design an estimation model. This estimation model reflects the effects of participatory and opportunistic nodes based on the success probability model. The proposed model considers the spatial and temporal correlation of sensing data to accurately estimate the missing information. By applying the linear regression and linear interpolation models to sample data from neighboring nodes of the missing data, the spatial and temporal context can be described. The experiment results show that the proposed model can estimate the missing data accurately in terms of simulated and real-world datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Data quality assessment: The Hybrid Approach
    Woodall, Philip
    Borek, Alexander
    Parlikad, Ajith Kumar
    INFORMATION & MANAGEMENT, 2013, 50 (07) : 369 - 382
  • [32] Improving official statistics in emerging markets using machine learning and mobile phone data
    Jahani, Eaman
    Sundsoy, Pal
    Bjelland, Johannes
    Bengtsson, Linus
    Pentland, Alex 'Sandy'
    de Montjoye, Yves-Alexandre
    EPJ DATA SCIENCE, 2017, 6
  • [33] Backpressure Meets Taxes: Faithful Data Collection in Stochastic Mobile Phone Sensing Systems
    Yang, Shusen
    Adeel, Usman
    McCann, Julie
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), 2015,
  • [34] Improving official statistics in emerging markets using machine learning and mobile phone data
    Eaman Jahani
    Pål Sundsøy
    Johannes Bjelland
    Linus Bengtsson
    Alex ‘Sandy’ Pentland
    Yves-Alexandre de Montjoye
    EPJ Data Science, 6
  • [35] Improving official statistics in emerging markets using machine learning and mobile phone data
    Jahani, Eaman
    Sundsoy, Pal
    Bjelland, Johannes
    Bengtsson, Linus
    Pentland, Alex 'Sandy'
    de Montjoye, Yves-Alexandre
    EPJ DATA SCIENCE, 2017, 6
  • [36] Privacy Preserving Fog-enabled Dynamic Data Aggregation in Mobile Phone Sensing
    Li, Xiaobo
    Zhou, Lei
    Fu, Anmin
    Yu, Shui
    Su, Mang
    Yang, Wei
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [37] The semen quality of the mobile phone users
    R. Rago
    P. Salacone
    L. Caponecchia
    A. Sebastianelli
    I. Marcucci
    A. E. Calogero
    R. Condorelli
    E. Vicari
    G. Morgia
    V. Favilla
    S. Cimino
    A. F. Arcoria
    S. La Vignera
    Journal of Endocrinological Investigation, 2013, 36 : 970 - 974
  • [38] Audiovisual quality estimation of mobile phone video cameras with interpretation-based quality approach
    Radun, Jenni E.
    Virtanen, Toni
    Olives, Jean-Luc
    Vaahteranoksa, Mikko
    Vuori, Tero
    Nyman, Goete
    IMAGE QUALITY AND SYSTEM PERFORMANCE IV, 2007, 6494
  • [39] The semen quality of the mobile phone users
    Rago, R.
    Salacone, P.
    Caponecchia, L.
    Sebastianelli, A.
    Marcucci, I.
    Calogero, A. E.
    Condorelli, R.
    Vicari, E.
    Morgia, G.
    Favilla, V.
    Cimino, S.
    Arcoria, A. F.
    La Vignera, S.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2013, 36 (11) : 970 - 974
  • [40] Assessing the Quality of Home Detection from Mobile Phone Data for Official Statistics
    Vanhoof, Maarten
    Reis, Fernando
    Ploetz, Thomas
    Smoreda, Zbigniew
    JOURNAL OF OFFICIAL STATISTICS, 2018, 34 (04) : 935 - 960