Insights on the reactivity of chondroitin and hyaluronan toward 1,4-butanediol diglycidyl ether

被引:7
|
作者
Wende, Frida J. [1 ]
Gohil, Suresh [1 ]
Nord, Lars I. [2 ]
Karlsson, Anders [2 ]
Kenne, Anne Helander [2 ]
Sandstrom, Corine [1 ]
机构
[1] Swedish Univ Agr Sci, Uppsala BioCtr, Dept Mol Sci, POB 7015, SE-75007 Uppsala, Sweden
[2] Res A&C Galderma, Seminariegatan 21, SE-75228 Uppsala, Sweden
关键词
Chondroitin; Hyaluronic acid; Cross-linker; NMR; LC-MS; HYDROXY PROTONS; SUBSTITUTION POSITIONS; SOLUTION CONFORMATION; AQUEOUS-SOLUTION; CHEMICAL-SHIFTS; CROSS-LINKING; NMR; SPECTRA; OLIGOSACCHARIDES; ASSIGNMENT;
D O I
10.1016/j.ijbiomac.2019.03.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hyaluronic acid (HA) cross-linked with 1,4-butanediol diglycidyl ether (BDDE) are hydrogels with many biomedical applications. Degree of substitution, cross-linking and substitution position of the cross-linker might influence the properties of the hydrogels. We showed earlier that the most common substitution position of the cross-linker on the hyaluronan chain was the 4-hydroxyl of N-acetylglucosamine. This result has led us to investigate unsulfated chondroitin (CN) which only differ from HA in the primary structure by the configuration at C4 of the aminoglycan. In the present study, we have investigated (i) the substitution positions of the cross-linker in CN using NMR and LC-MS and compared the results to the data obtained for HA (ii) the effect of alkali on the C-13 and H-1 chemical shifts in CN and HA (iii) the temperature coefficients and chemical shifts of hydroxyl protons in CN and HA. In CN, the 2-hydroxyl of glucuronic acid and 6-hydroxyl of N-acetylgalactosamine were found to be the major sites of substitution by BDDE. Moreover, while chondroitinase was not able to cleave HA tetrasaccharide substituted at the 4-hydroxyl GIcNAc reducing end by BDDE, it is able to degrade CN-BDDE down to disaccharide units. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:812 / 820
页数:9
相关论文
共 50 条
  • [21] A Highly Water-Resistant Soy-Based Bioadhesive with 1,4-Butanediol Diglycidyl Ether and its Application on Plywood
    Li, Kun
    Li, Xiaona
    Luo, Jing
    Li, Jingjing
    Gao, Qiang
    Li, Jianzhang
    [J]. JOURNAL OF RENEWABLE MATERIALS, 2017, 5 : 31 - 38
  • [22] DETECTING 1,4-BUTANEDIOL IN BEVERAGES
    Nazarouk, Maria
    Dai, Zhaohua
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2017, 277 : 205 - 205
  • [23] The Dielectric Properties of 1,4-Butanediol
    V. I. Zhuravlev
    N. V. Lifanova
    T. M. Usacheva
    E. P. Vydrina
    [J]. Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82 (3): : 490 - 491
  • [24] BIOCHEMICAL TOXICOLOGY OF 1,4-BUTANEDIOL
    ZABIK, JE
    VANDAM, DP
    MAICKEL, R
    [J]. TOXICOLOGY AND APPLIED PHARMACOLOGY, 1973, 25 (03) : 461 - 462
  • [25] ACOUSTIC RELAXATION IN 1,4-BUTANEDIOL
    ZHUMAEV, T
    OVLYAKULIEV, B
    SHAKHPARONOV, MI
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 2 KHIMIYA, 1986, 27 (05): : 486 - 489
  • [26] The dielectric properties of 1,4-butanediol
    Zhuravlev, V. I.
    Lifanova, N. V.
    Usacheva, T. M.
    Vydrina, E. P.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 82 (03) : 490 - 491
  • [27] WHICH ROUTE TO 1,4-BUTANEDIOL
    BROWNSTEIN, AM
    LIST, HL
    [J]. HYDROCARBON PROCESSING, 1977, 56 (09): : 159 - 162
  • [28] Intoxication due to 1,4-butanediol
    Lora-Tamayo, C
    Tena, T
    Rodríguez, A
    Sancho, JR
    Molina, E
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2003, 133 (03) : 256 - 259
  • [29] ON THE INTERACTION OF THIOPHENOL WITH 1,4-BUTANEDIOL
    RABADANOV, GA
    VAGABOV, MV
    KARAKHANOV, EA
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 2 KHIMIYA, 1981, 22 (05): : 509 - 511
  • [30] PRICE HIKES FOR 1,4-BUTANEDIOL
    不详
    [J]. EUROPEAN CHEMICAL NEWS, 1994, 62 (1636): : 11 - 11