Interactive Multi-objective Dynamic Optimization of Bioreactors under Parametric Uncertainty

被引:15
|
作者
Nimmegeers, Philippe [1 ,2 ,3 ]
Vallerio, Mattia [1 ,2 ,3 ]
Telen, Dries [1 ,2 ,4 ]
Van Impe, Jan [1 ,2 ]
Logist, Filip [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Chem Engn Chem & Biochem Proc Technol & Cont, Gebroeders Smetstr 1, B-9000 Ghent, Belgium
[2] Katholieke Univ Leuven, OPTEC, Optimizat Engn Ctr Of Excellence, Kasteelpk Arenberg 1, B-3001 Leuven Heverlee, Belgium
[3] BASF Antwerpen NV, Scheldelaan 600, B-2040 Antwerp, Belgium
[4] Ernst&Young, De Kleetlaan 2, B-1831 Machelen, Belgium
关键词
Multi-objective optimization; Robustness; Sigma point method; Uncertainty propagation; NONDOMINATED SORTING APPROACH; NORMAL-BOUNDARY INTERSECTION; MULTICRITERIA OPTIMIZATION; DECISION-SUPPORT; ROBUST OPTIMIZATION; ALGORITHM; DESIGN; IMPLEMENTATION;
D O I
10.1002/cite.201800082
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Model-based optimization techniques play a key role in achieving a sustainable operation of biochemical processes. Models are an approximation of the real process under study, hence, uncertainty is inherently present and for a sustainable process operation this uncertainty should be accounted for. In practice, optimality with respect to different conflicting objectives is required and multi-objective optimization is a valuable tool. In this article the sigma point approach is applied to account for parametric uncertainty in the frame of interactive multi-objective bioprocess optimization.
引用
收藏
页码:349 / 362
页数:14
相关论文
共 50 条
  • [31] Augmenting Interactive Evolution with Multi-Objective Optimization
    Christman, Joshua R.
    Woolley, Brian G.
    [J]. 2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 973 - 980
  • [32] AN ALGORITHM FOR MULTI-OBJECTIVE EFFICIENT PARAMETRIC OPTIMIZATION
    Weaver-Rosen, Jonathan M.
    Malak, Richard J., Jr.
    [J]. PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 3B, 2022,
  • [33] Multi-Objective Parametric Optimization of an Equilibrator Mechanism
    Kurtulmus, Ergin
    [J]. SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 6, 2017, : 25 - 40
  • [34] An Algorithm for Multi-Objective Efficient Parametric Optimization
    Weaver-Rosen, Jonathan M.
    Malak, Richard J.
    [J]. JOURNAL OF MECHANICAL DESIGN, 2023, 145 (03)
  • [35] An approach to multi-objective optimization for parametric synthesis
    Shea, K
    [J]. DESIGN METHODS FOR PERFORMANCE AND SUSTAINABILITY, 2001, : 203 - 210
  • [36] Multi-objective optimization of problems with epistemic uncertainty
    Limbourg, P
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 413 - 427
  • [37] On the Compatibility of Uncertainty Formalisms in Multi-Objective Optimization
    Kalinina, Maria
    Larsson, Aron
    Sundgren, David
    [J]. SMART DIGITAL FUTURES 2014, 2014, 262 : 48 - 58
  • [38] Multi-objective Hyperparameter Optimization with Performance Uncertainty
    Morales-Hernandez, Alejandro
    Van Nieuwenhuyse, Inneke
    Napoles, Gonzalo
    [J]. OPTIMIZATION AND LEARNING, OLA 2022, 2022, 1684 : 37 - 46
  • [39] Acceleration of Parametric Multi-objective Optimization by an Initialization Technique for Multi-objective Evolutionary Algorithms
    Kaji, Hirotaka
    Ikeda, Kokolo
    Kita, Hajime
    [J]. 2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2291 - +
  • [40] Dynamic multi-objective heating optimization
    Hämäläinen, RP
    Mäntysaari, J
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 142 (01) : 1 - 15