Effective Strategies for Deep Learning with Scarce Data for Prostate Lesion Classification Using Multiparametric MRI

被引:0
|
作者
Karimi, D. [1 ]
Ruan, D. [1 ]
机构
[1] Univ Calif Los Angeles, Sch Med, Los Angeles, CA USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SU-K-601-0
引用
收藏
页码:3014 / 3014
页数:1
相关论文
共 50 条
  • [31] Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification
    Liu, Yongkai
    Zheng, Haoxin
    Liang, Zhengrong
    Miao, Qi
    Brisbane, Wayne G.
    Marks, Leonard S.
    Raman, Steven S.
    Reiter, Robert E.
    Yang, Guang
    Sung, Kyunghyun
    DIAGNOSTICS, 2021, 11 (10)
  • [32] Blind MRI Brain Lesion Inpainting Using Deep Learning
    Manjon, Jose V.
    Romero, Jose E.
    Vivo-Hernando, Roberto
    Rubio, Gregorio
    Aparici, Fernando
    de la Iglesia-Vaya, Maria
    Tourdias, Thomas
    Coupe, Pierrick
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2020, 2020, 12417 : 41 - 49
  • [33] TBI LESION SEGMENTATION FROM MRI USING DEEP LEARNING
    Roy, Snehashis
    Butman, John
    Chan, Leighton
    Dzung Pham
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A152 - A152
  • [34] DEEP LEARNING FOR SEMI-AUTOMATED PIRADSV2 SCORING ON MULTIPARAMETRIC PROSTATE MRI
    Sanford, Tom
    Harmon, Stephanie
    Madariaga, Manuel
    Kesani, Deepak
    Mehralivand, Sherif
    Lay, Nathan
    Xu, Sheng
    Bloom, Jonathan
    Lebastchi, Amir
    Ahdoot, Michael
    Merino, Maria
    Wood, Brad
    Valera, Vladimir
    Choyke, Peter
    Pinto, Peter
    Turkbey, Baris
    JOURNAL OF UROLOGY, 2019, 201 (04): : E1076 - E1077
  • [35] Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study
    Sanford, Thomas
    Harmon, Stephanie A.
    Turkbey, Evrim B.
    Kesani, Deepak
    Tuncer, Sena
    Madariaga, Manuel
    Yang, Chris
    Sackett, Jonathan
    Mehralivand, Sherif
    Yan, Pingkun
    Xu, Sheng
    Wood, Bradford J.
    Merino, Maria J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (05) : 1499 - 1507
  • [36] Combined unsupervised-supervised classification of multiparametric PET/MRI data: application to prostate cancer
    Gatidis, Sergios
    Scharpf, Markus
    Martirosian, Petros
    Bezrukov, Ilja
    Kuestner, Thomas
    Hennenlotter, Joerg
    Kruck, Stephan
    Kaufmann, Sascha
    Schraml, Christina
    la Fougere, Christian
    Schwenzer, Nina F.
    Schmidt, Holger
    NMR IN BIOMEDICINE, 2015, 28 (07) : 914 - 922
  • [37] Deep Convolutional Neural Networks for Prostate Cancer Detection On Multiparametric MRI: A Transfer Learning Approach
    Chen, Q.
    Hu, S.
    Xu, X.
    Li, X.
    Zou, Q.
    Li, Y.
    MEDICAL PHYSICS, 2017, 44 (06) : 3158 - 3158
  • [38] A Deep Learning Based Effective Model for Brain Tumor Segmentation and Classification Using MRI Images
    Gayathri, T.
    Kumar, Sundeep K.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (06) : 1280 - 1288
  • [39] Editorial for "MRI-Based Breast Cancer Classification and Localization by Multiparametric Feature Extraction and Combination Using Deep Learning"
    Narongrit, Folk W.
    Rispoli, Joseph V.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023,
  • [40] A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI
    Hu, Qiyuan
    Whitney, Heather M.
    Giger, Maryellen L.
    SCIENTIFIC REPORTS, 2020, 10 (01)