Experimental Study on Characteristics of Methane-Coal-Dust Mixture Explosion and Its Mitigation by Ultra-Fine Water Mist

被引:28
|
作者
Xu, Hongli [1 ]
Wang, Xishi [1 ]
Gu, Rui [1 ]
Zhang, Heping [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
关键词
explosion; methane; coal dust; explosion mitigation; water mist; GAS-EXPLOSIONS; POOL FIRE; EXTINCTION; SPRAYS;
D O I
10.1115/1.4005816
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents the results of an experimental investigation on the characteristics of methane-coal-dust mixture explosion and its mitigation by ultra-fine water mist. Four E12-1-K-type fast response thermocouples, two printed circuit board (PCB) piezotronic pressure transducers were used to obtain the temperature and pressure history, while a GigaView high-speed camera was used to visualize the processes. Different methane concentrations, coal-dust concentrations, diameters of coal particles, and volumes of ultrafine water mist were considered to investigate their effects on methane-coal-dust mixture explosion. The temperature of explosion flame, the maximum explosion overpressure, the maximum rate of overpressure rise, and the critical volume flux of ultra-fine water mist were experimentally determined. The results show that the characteristics of the methane-coal-dust mixture explosion and the mitigating effectiveness by ultra-fine water mist are influenced by the methane concentration, the coal-dust concentration, the coal-dust diameter and the applied volume flux of ultra-fine water mist. For example, both the maximum explosion overpressure and rate of overpressure rise increased with increasing of coal-dust concentrations and methane concentrations. All of the test cases indicate that ultra-fine water mist can mitigate the mixture explosion and suppress the flame propagation efficiently from the images recorded by the high-speed video camera. [DOI: 10.1115/1.4005816]
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Experimental investigation of methane/coal dust explosion under influence of obstacles and ultrafine water mist
    Xu, Hongli
    Wang, Xishi
    Li, Yuan
    Zhu, Pei
    Cong, Haiyong
    Qin, Wenxi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 49 : 929 - 937
  • [12] Coal combustion restrained by ultra-fine water mist in confined space
    YU, Ming-gao
    YANG, Ke
    JIA, Hai-lin
    LU, Chang
    LU, Lai-xiang
    Mining Science and Technology, 2009, 19 (05): : 574 - 579
  • [14] Experimental study on inhibiting the gas and coal dust explosion by water mist in tube with obstacle
    Li Zhen-feng
    Cao Shao-long
    An An
    Hu Peng
    ISMSSE 2011, 2011, 26
  • [15] Experimental Study on PMMA Combustion Restraining by Ultra-fine Water Mist in Confined Space
    Yang, Ke
    Ji, Hong
    Xing, Zhixiang
    Ou, Hongxiang
    2015 INTERNATIONAL CONFERENCE ON NEW ENERGY SCIENCE AND RESEARCH (ICESR 2015), 2015, : 556 - 561
  • [16] Experimental Study on Ultra-fine Water Mist Extinguishing Heptane Cup Fire in Confined Space
    Liu Jian-yong
    Zhu De-ming
    Zhao Zhe
    Liang Dong
    2012 INTERNATIONAL CONFERENCE ON PERFORMANCE-BASED FIRE AND FIRE PROTECTION ENGINEERING, 2013, 52 : 225 - 229
  • [17] Experimental study on the characteristics of gas and coal dust explosion
    Zhou, N
    Shen, ZW
    Guo, ZR
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL 6, 2005, : 620 - 625
  • [18] Experimental study on propagation characteristics of coal dust explosion
    Jing, Guo-Xun
    Yang, Shu-Zhao
    Meitan Xuebao/Journal of the China Coal Society, 2010, 35 (04): : 605 - 608
  • [19] Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist
    Cao, Xingyan
    Ren, Jingjie
    Bi, Mingshu
    Zhou, Yihui
    Li, Yiming
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 324 : 489 - 497
  • [20] UPPER EXPLOSION LIMITS OF COAL DUST-METHANE-AIR MIXTURES - 1. EXPERIMENTAL STUDY ON THE EXPLOSION CHARACTERISTICS OF COAL DUST-METHANE-AIR MIXTURES.
    Ishihama, Wataru
    Enomoto, Heiji
    Sekimoto, Yoshinori
    Nihon Kogyokaishi, 1982, 98 (1135): : 933 - 937