Phase boundaries of a spin-3/2 Blume-Emery-Griffiths model on a honeycomb lattice

被引:8
|
作者
Zukovic, M. [1 ]
Jascur, M. [1 ]
机构
[1] Safarik Univ, Fac Sci, Dept Theoret Phys & Astrophys, Kosice 04154, Slovakia
关键词
Blume-Emery-Griffiths model; Honeycomb lattice; Monte Carlo simulation; Phase transition; CAPEL MODEL; MONTE-CARLO; ISING SYSTEMS; TRIPLET IONS; BEG MODEL; TRANSITIONS; MIXTURES;
D O I
10.1016/j.jmmm.2013.11.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spin-3/2 Blume-Emery-Griffiths model on a honeycomb lattice is studied by Monte Carlo simulations with the goal to determine phase diagrams for a range of the model parameters and to investigate the nature of the phase transitions between the respective phases. For positive values of the biquadratic to bilinear interaction ratio alpha, we find two ferromagnetically ordered phases, F-1 and F-2, with the sublattice magnetizations (1/2,1/2) and (3/2,3/2), respectively, and our results confirm the discontinuous character of the order-disorder critical line as a function of the single-ion anisotropy strength, predicted by the effective-field theory (EFT). For negative values of alpha, there is another ferrimagnetic phase of the type (1/2,3/4 located between F-1 and F-2. However, the step-like variation of the order-disorder critical frontier obtained from EFT for large negative a is not reproduced and thus deemed artifact of the EFT approximation. Finite-size scaling analysis performed at various points between the respective identified phases gave the ratio of critical exponents gamma/nu, consistent with the 2D Ising universality class, except in the vicinity of the boundary intersection, where the results deviated from the standard values beyond the measurement errors. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 278
页数:7
相关论文
共 50 条
  • [31] Renormalization Group Study of the Mixed Spin-1 and Spin-3/2 Blume-Emery-Griffiths Model with Attractive Biquadratic Coupling
    Lafhal, A.
    El Antari, A.
    Hachem, N.
    Al-Rajhi, A.
    Aharrouch, R.
    Saadi, H.
    Madani, M.
    El Bouziani, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1165 - 1178
  • [32] Monte Carlo Simulations of the Spin-2 Blume-Emery-Griffiths Model
    Iwashita, Takashi
    Uragami, Kakuko
    Muraoka, Yoshinori
    Kinoshita, Takehiro
    Idogaki, Toshihiro
    INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
  • [33] Phase diagram for a frustrated disordered Blume-Emery-Griffiths model
    Puha, I.
    Diep, H.T.
    Campbell, I.
    Journal of Applied Physics, 1999, 85 (8 pt 2B):
  • [34] Phase diagrams of the Blume-Emery-Griffiths model with site dilution
    Balcerzak, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (226-230) : 599 - 600
  • [35] Mixed spin-2 and spin-5/2 Blume-Emery-Griffiths model
    Albayrak, E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 174 - 184
  • [36] REENTRANT PHASE-TRANSITIONS OF THE BLUME-EMERY-GRIFFITHS MODEL
    KASONO, K
    ONO, I
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 88 (02): : 205 - 212
  • [37] The ferrimagnetic phase of the Blume-Emery-Griffiths model on the cellular automaton
    Seferoglu, Nurguel
    Kutlu, Buelent
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (02): : 230 - 237
  • [38] Blume-Emery-Griffiths model on random graphs
    Erichsen, R.
    Silveira, Alexandre
    Magalhaes, S. G.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 614
  • [39] Rates of Convergence in the Blume-Emery-Griffiths Model
    Eichelsbacher, Peter
    Martschink, Bastian
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (06) : 1483 - 1507
  • [40] CUMULANT FORMALISM FOR THE BLUME-EMERY-GRIFFITHS MODEL
    CHAKRABORTY, KG
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (21) : 4997 - 5000