Derivative-Free Optimization Via Proximal Point Methods

被引:10
|
作者
Hare, W. L. [1 ]
Lucet, Y. [2 ]
机构
[1] Univ British Columbia, Kelowna, BC V1V 1V7, Canada
[2] UBCO, Kelowna, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Derivative-free optimization; Proximal point method; Unconstrained minimization; BUNDLE METHOD; NONCONVEX FUNCTIONS; MINIMIZATION; NONSMOOTH; ALGORITHM; INTERPOLATION; SMOOTHNESS; REGULARITY; GEOMETRY; SETS;
D O I
10.1007/s10957-013-0354-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Derivative-Free Optimization (DFO) examines the challenge of minimizing (or maximizing) a function without explicit use of derivative information. Many standard techniques in DFO are based on using model functions to approximate the objective function, and then applying classic optimization methods to the model function. For example, the details behind adapting steepest descent, conjugate gradient, and quasi-Newton methods to DFO have been studied in this manner. In this paper we demonstrate that the proximal point method can also be adapted to DFO. To that end, we provide a derivative-free proximal point (DFPP) method and prove convergence of the method in a general sense. In particular, we give conditions under which the gradient values of the iterates converge to 0, and conditions under which an iterate corresponds to a stationary point of the objective function.
引用
收藏
页码:204 / 220
页数:17
相关论文
共 50 条
  • [1] Derivative-Free Optimization Via Proximal Point Methods
    W. L. Hare
    Y. Lucet
    Journal of Optimization Theory and Applications, 2014, 160 : 204 - 220
  • [2] Derivative-free optimization methods
    Larson, Jeffrey
    Menickelly, Matt
    Wild, Stefan M.
    ACTA NUMERICA, 2019, 28 : 287 - 404
  • [3] Derivative-free Methods for Structural Optimization
    Ilunga, Guilherme
    Leitao, Antonio
    ECAADE 2018: COMPUTING FOR A BETTER TOMORROW, VO 1, 2018, : 179 - 186
  • [4] Derivative-Free Optimization via Classification
    Yu, Yang
    Qian, Hong
    Hu, Yi-Qi
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2286 - 2292
  • [5] DERIVATIVE-FREE OPTIMIZATION OF NOISY FUNCTIONS VIA QUASI-NEWTON METHODS
    Berahas, Albert S.
    Byrd, Richard H.
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 965 - 993
  • [6] Derivative-free optimization methods for finite minimax problems
    Hare, Warren
    Macklem, Mason
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (02): : 300 - 312
  • [7] On the global convergence of derivative-free methods or unconstrained optimization
    Lucidi, S
    Sciandrone, M
    SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) : 97 - 116
  • [8] Boosting One-Point Derivative-Free Online Optimization via Residual Feedback
    Zhang, Yan
    Zhou, Yi
    Ji, Kaiyi
    Shen, Yi
    Zavlanos, Michael M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6309 - 6316
  • [9] An interior point method for nonlinear constrained derivative-free optimization
    Brilli, A.
    Liuzzi, G.
    Lucidi, S.
    OPTIMIZATION METHODS & SOFTWARE, 2025,
  • [10] Decomposition in derivative-free optimization
    Kaiwen Ma
    Nikolaos V. Sahinidis
    Sreekanth Rajagopalan
    Satyajith Amaran
    Scott J Bury
    Journal of Global Optimization, 2021, 81 : 269 - 292