On the global convergence of derivative-free methods or unconstrained optimization

被引:55
|
作者
Lucidi, S
Sciandrone, M
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
[2] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
关键词
unconstrained minimization; derivative-free methods;
D O I
10.1137/S1052623497330392
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, starting from the study of the common elements that some globally convergent direct search methods share, a general convergence theory is established for unconstrained minimization methods employing only function values. The introduced convergence conditions are useful for developing and analyzing new derivative-free algorithms with guaranteed global convergence. As examples, we describe three new algorithms which combine pattern and line search approaches.
引用
收藏
页码:97 / 116
页数:20
相关论文
共 50 条
  • [1] A derivative-free algorithm for unconstrained optimization
    Peng Y.
    Liu Z.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 491 - 498
  • [2] Unconstrained derivative-free optimization by successive approximation
    Burmen, Arpad
    Tuma, Tadej
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 62 - 74
  • [3] Derivative-free optimization methods
    Larson, Jeffrey
    Menickelly, Matt
    Wild, Stefan M.
    ACTA NUMERICA, 2019, 28 : 287 - 404
  • [4] A derivative-free algorithm for sparse unconstrained optimization problems
    Colson, B
    Toint, PL
    TRENDS IN INDUSTRIAL AND APPLIED MATHEMATICS, PROCEEDINGS, 2002, 72 : 131 - 147
  • [5] New Subspace Method for Unconstrained Derivative-Free Optimization
    Kimiaei, Morteza
    Neumaier, Arnold
    Faramarzi, Parvaneh
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (04):
  • [6] On Acceleration of Derivative-Free Univariate Lipschitz Global Optimization Methods
    Kvasov, Dmitri E.
    Mukhametzhanov, Marat S.
    Nasso, Maria Chiara
    Sergeyev, Yaroslav D.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 : 413 - 421
  • [7] Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization
    Palomares, Ubaldo M. Garcia M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 85 (03) : 821 - 856
  • [8] Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization
    Ubaldo M. García Palomares
    Computational Optimization and Applications, 2023, 85 : 821 - 856
  • [9] DERIVATIVE-FREE METHODS WITH HIGHER CONVERGENCE RATE
    SCHMIDT, JW
    SCHWETLICK, H
    COMPUTING, 1968, 3 (03) : 215 - +
  • [10] Derivative-free Methods for Structural Optimization
    Ilunga, Guilherme
    Leitao, Antonio
    ECAADE 2018: COMPUTING FOR A BETTER TOMORROW, VO 1, 2018, : 179 - 186