Oxidative Folding in the Mitochondrial Intermembrane Space in Human Health and Disease

被引:7
|
作者
Fraga, Hugo [1 ]
Ventura, Salvador [1 ,2 ]
机构
[1] Autonomous Univ Barcelona, Dept Biochem & Mol Biol, E-08193 Bellaterra, Spain
[2] Autonomous Univ Barcelona, Inst Biotechnol & Biomed, E-08193 Bellaterra, Spain
关键词
cysteine motifs; disulfide bonds; Erv1; intermembrane space; Mia40; mitochondria; oxidative protein folding; protein import; oxidative stress; DISULFIDE RELAY SYSTEM; PROTEIN IMPORT; COPPER CHAPERONE; SUPEROXIDE-DISMUTASE; CU; ZN-SUPEROXIDE DISMUTASE; CRYSTAL-STRUCTURE; MIA40; SOD1; METALLOCHAPERONE; TRANSLOCATION;
D O I
10.3390/ijms14022916
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative folding in the mitochondrial intermembrane space (IMS) is a key cellular event associated with the folding and import of a large and still undetermined number of proteins. This process is catalyzed by an oxidoreductase, Mia40 that is able to recognize substrates with apparently little or no homology. Following substrate oxidation, Mia40 is reduced and must be reoxidized by Erv1/Alr1 that consequently transfers the electrons to the mitochondrial respiratory chain. Although our understanding of the physiological relevance of this process is still limited, an increasing number of pathologies are being associated with the impairment of this pathway; especially because oxidative folding is fundamental for several of the proteins involved in defense against oxidative stress. Here we review these aspects and discuss recent findings suggesting that oxidative folding in the IMS is modulated by the redox state of the cell.
引用
收藏
页码:2916 / 2927
页数:12
相关论文
共 50 条
  • [21] Shuttle mission in the mitochondrial intermembrane space
    Endo, Toshiya
    Tamura, Yasushi
    EMBO JOURNAL, 2018, 37 (04):
  • [22] The biogenesis of mitochondrial intermembrane space proteins
    Edwards, Ruairidh
    Gerlich, Sarah
    Tokatlidis, Kostas
    BIOLOGICAL CHEMISTRY, 2020, 401 (6-7) : 737 - 747
  • [23] Chaperoning through the mitochondrial intermembrane space
    Wiedemann, N
    Pfanner, N
    Chacinska, A
    MOLECULAR CELL, 2006, 21 (02) : 145 - 148
  • [24] Proteomics of mitochondrial intermembrane space proteins
    Muhammad, S
    Hoppel, CL
    FASEB JOURNAL, 2005, 19 (05): : A1068 - A1068
  • [25] Mitochondrial import: Crossing the aqueous intermembrane space
    Pfanner, N
    CURRENT BIOLOGY, 1998, 8 (08) : R262 - R265
  • [26] The Mitochondrial Intermembrane Space Oxireductase Mia40 Funnels the Oxidative Folding Pathway of the Cytochrome c Oxidase Assembly Protein Cox19*
    Fraga, Hugo
    Bech-Serra, Joan-Josep
    Canals, Francesc
    Ortega, Gabriel
    Millet, Oscar
    Ventura, Salvador
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (14) : 9852 - 9864
  • [27] Human CLPB forms ATP-dependent complexes in the mitochondrial intermembrane space
    Thevarajan, Indhujah
    Zolkiewski, Michal
    Zolkiewska, Anna
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2020, 127
  • [28] Membrane Interaction of Mitochondrial Intermembrane Space Kinases
    Schlattner, Uwe
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 447A - 448A
  • [29] Deleterious role of superoxide dismutase in the mitochondrial intermembrane space
    Goldsteins, Gundars
    Keksa-Goldsteine, Velta
    Ahtoniemi, Toni
    Jaronen, Merja
    Arens, Egils
    Akerman, Karl
    Chan, Pak H.
    Koistinaho, Jari
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (13) : 8446 - 8452
  • [30] Mitochondrial superoxide anion production and release into intermembrane space
    Han, D
    Antunes, F
    Daneri, F
    Cadenas, E
    SUPEROXIDE DISMUTASE, 2002, 349 : 271 - 280