Termination time of characteristics of Hamilton-Jacobi equations

被引:2
|
作者
Li, Tian-Hong [1 ,2 ]
Li, Xing [1 ]
机构
[1] Chinese Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sinica, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
来源
关键词
Hamilton-Jacobi equation; Lax-Hopf formula; Characteristic; Global structure; Singularity; Termination time; Path-connected components; GLOBAL STRUCTURE; REGULARITY;
D O I
10.1007/s00033-012-0248-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with Hamilton-Jacobi equations of n space variables, where the Hamiltonians are convex and the initial data are admitted to be unbounded. First, we study the characteristics for the general case of initial data being Lipschitz by using the Hopf formula. Sufficient and necessary conditions are established for guaranteeing a characteristic to start from y (0) at t = 0 with direction DH(P (0)) and for a characteristic never terminating on a singularity of the solution. Next, in the case of initial data being C (2), we prove that the set of singularities consists of at most countable path-connected components, which is an extension of (Zhao et al. in J Hyperbolic Differ Equ 5(3):663-680, 2008) and (Li in Sci Sinica 22(9):979-990, 1979).
引用
收藏
页码:799 / 809
页数:11
相关论文
共 50 条
  • [1] Termination time of characteristics of Hamilton-Jacobi equations
    Tian-Hong Li
    Xing Li
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 799 - 809
  • [2] GENERALIZED CHARACTERISTICS OF HAMILTON-JACOBI EQUATIONS
    SUBBOTIN, AI
    TARASYEV, AM
    USHAKOV, VN
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (02) : 157 - 163
  • [3] Large Time Asymptotics of Hamilton-Jacobi Equations
    DYNAMICAL AND GEOMETRIC ASPECTS OF HAMILTON-JACOBI AND LINEARIZED MONGE-AMPERE EQUATIONS, VIASM 2016, 2017, 2183 : 141 - 176
  • [4] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [5] Excess action and broken characteristics for Hamilton-Jacobi equations
    Strömberg, Thomas
    Ahmadzadeh, Farzaneh
    Nonlinear Analysis, Theory, Methods and Applications, 2014, 110 : 113 - 129
  • [6] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [7] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [8] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [9] Excess action and broken characteristics for Hamilton-Jacobi equations
    Stromberg, Thomas
    Ahmadzadeh, Farzaneh
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 110 : 113 - 129
  • [10] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696