MULTI-LABEL ACTIVE LEARNING WITH LOW-RANK MAPPING FOR IMAGE CLASSIFICATION

被引:0
|
作者
Guo, Anqian [1 ]
Wu, Jian [1 ]
Sheng, Victor S. [2 ]
Zhao, Pengpeng [1 ]
Cui, Zhiming [1 ]
机构
[1] Soochow Univ, Inst Intelligent Informat Proc & Applicat, Suzhou 215006, Peoples R China
[2] Univ Cent Arkansas, Dept Comp Sci, Conway, AR 72035 USA
基金
美国国家科学基金会;
关键词
Active learning; multi-label image classification; label correlation; automatic labeling;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In multi-label image classification, each image is always associated with multiple labels and labels are usually correlated with each other. The intrinsic relation among labels can definitely contribute to classifier training. However, most previous studies on active learning for multi-label image classification purely mine label correlation based on observed label distribution. They ignore the mapping relation between examples and their labels. This mapping relation also implicates label relationship. Ignoring the mapping relation leads to an uncomprehensive label correlation estimation and results in a bad performance for classification. In this paper, we propose a novel multi-label active learning with low-rank mapping for image classification, called LMMAL, to solve this issue. More precisely, we train a low-rank mapping matrix to signify the mapping relation between the feature space and the label space of a certain multi-label dataset. Using this low-rank mapping relation, we exploit a full label correlation. Subsequently, an effective sampling strategy is designed by integrating this potential information with uncertainty to select the most informative example-label pairs. In addition, we extend LMMAL with automatic labeling( denoted as AL-LMMAL) to further reduce the annotation workload of active learning. Empirical results demonstrate the effectiveness of our approaches.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 50 条
  • [31] Low Rank Multi-Label Classification with Missing Labels
    Guo, Baolin
    Hou, Chenping
    Shan, Jincheng
    Yi, Dongyun
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 417 - 422
  • [32] Robust Semi-supervised Multi-label Learning by Triple Low-Rank Regularization
    Sun, Lijuan
    Feng, Songhe
    Lyu, Gengyu
    Lang, Congyan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 : 269 - 280
  • [33] Active learning for hierarchical multi-label classification
    Nakano, Felipe Kenji
    Cerri, Ricardo
    Vens, Celine
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (05) : 1496 - 1530
  • [34] MULTIMODAL LEARNING FOR MULTI-LABEL IMAGE CLASSIFICATION
    Pang, Yanwei
    Ma, Zhao
    Yuan, Yuan
    Li, Xuelong
    Wang, Kongqiao
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1797 - 1800
  • [35] Active learning for hierarchical multi-label classification
    Felipe Kenji Nakano
    Ricardo Cerri
    Celine Vens
    Data Mining and Knowledge Discovery, 2020, 34 : 1496 - 1530
  • [36] Causal multi-label learning for image classification
    Tian, Yingjie
    Bai, Kunlong
    Yu, Xiaotong
    Zhu, Siyu
    NEURAL NETWORKS, 2023, 167 : 626 - 637
  • [37] Multi-view low-rank dictionary learning for image classification
    Wu, Fei
    Jing, Xiao-Yuan
    You, Xinge
    Yue, Dong
    Hu, Ruimin
    Yang, Jing-Yu
    PATTERN RECOGNITION, 2016, 50 : 143 - 154
  • [38] A deep low-rank semantic factorization method for micro-video multi-label classification
    Fan, Fugui
    Su, Yuting
    Liu, Yun
    Jing, Peiguang
    Qu, Kaihua
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [39] Multi-label Iterated Learning for Image Classification with Label Ambiguity
    Rajeswar, Sai
    Rodriguez, Pau
    Singhal, Soumye
    Vazquez, David
    Courville, Aaron
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4773 - 4783
  • [40] Semi-automatic Labeling with Active Learning for Multi-label Image Classification
    Wu, Jian
    Ye, Chen
    Sheng, Victor S.
    Yao, Yufeng
    Zhao, Pengpeng
    Cui, Zhiming
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 473 - 482