Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs

被引:15
|
作者
Deckelnick, Klaus [1 ]
Hinze, Michael [2 ]
机构
[1] Univ Magdeburg, Inst Anal & Numer, D-39106 Magdeburg, Germany
[2] Univ Hamburg, D-20146 Hamburg, Germany
关键词
DISCRETIZATION;
D O I
10.1088/0266-5611/28/11/115015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a numerical method for solving the inverse problem of identifying the diffusion matrix in an elliptic PDE from distributed noisy measurements. We use a regularized least-squares approach in which the state equations are given by a finite element discretization of the elliptic PDE. The unknown matrix parameters act as control variables and are handled with the help of variational discretization as introduced in (Hinze M 2005 Comput. Optim. Appl. 30 45-61). For a suitable coupling of Tikhonov regularization parameter, finite element grid size and noise level we are able to prove L-2-convergence of the discrete solutions to the unique norm-minimal solution of the identification problem; corresponding convergence rates can be obtained provided that a suitable projected source condition is fulfilled. Finally, we present a numerical experiment which supports our theoretical findings.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] L∞-Convergence Analysis of a Finite Element Linear Schwarz Alternating Method for a Class of Semi-Linear Elliptic PDEs
    Al Farei, Qais
    Boulbrachene, Messaoud
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [22] Accelerating the convergence of Newton's method for nonlinear elliptic PDEs using Fourier neural operators
    Aghili, Joubine
    Franck, Emmanuel
    Hild, Romain
    Michel-Dansac, Victor
    Vigon, Vincent
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [23] CONVERGENCE AND ERROR ESTIMATES FOR METHOD OF LINES FOR CERTAIN NONLINEAR ELLIPTIC AND ELLIPTIC-PARABOLIC EQUATIONS
    THOMPSON, RC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (01) : 27 - 43
  • [24] A PRIORI ERROR ANALYSIS OF STOCHASTIC GALERKIN MIXED APPROXIMATIONS OF ELLIPTIC PDEs WITH RANDOM DATA
    Bespalov, Alexei
    Powell, Catherine E.
    Silvester, David
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 2039 - 2063
  • [25] Parameters identification method of Stewart platform based on error sensitivity analysis
    Shi, Yong
    Liu, Wentao
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2013, 45 (10): : 123 - 128
  • [26] Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic PDES
    Harbi, A.
    Boulbrachene, M.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [27] Simultaneous identification of independent parameters in elliptic equations - numerical studies
    Hein, T.
    Meyer, M.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (05): : 417 - 433
  • [28] A KERNEL-BASED EMBEDDING METHOD AND CONVERGENCE ANALYSIS FOR SURFACES PDEs
    Cheung, Ka Chun
    Ling, Leevan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01): : A266 - A287
  • [29] ERROR AND CONVERGENCE IN NUMERICAL IMPLEMENTATIONS OF THE CONJUGATE-GRADIENT METHOD
    RAY, SL
    PETERSON, AF
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (12) : 1824 - 1827
  • [30] An iterative spatial-stepping numerical method for linear elliptic PDEs using the Unified Transform
    Grylonakis, E. -N. G.
    Filelis-Papadopoulos, C. K.
    Gravvanis, G. A.
    Fokas, A. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 194 - 209