The beneficial role of indigenous arbuscular mycorrhizal fungi in phytoremediation of wetland plants and tolerance to metal stress

被引:13
|
作者
Sidhoum, Warda [1 ,2 ]
Fortas, Zohra [1 ]
机构
[1] Univ Oran, Lab Microorganisms Biol & Biotechnol, Oran, Algeria
[2] Univ Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
关键词
wetlands; phytoremediation; metal accumulation; AM fungi; metallic elements; COMMUNITY STRUCTURE; ACCUMULATION; ROOTS; L; SPECIATION; DIVERSITY;
D O I
10.24425/aep.2019.125916
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The potential of five plants namely Atriplex halimus L., A. canescens (Pursh) Nutt., Suaeda fruticosa (Forssk. ex J.F. Gmel.), Marrubium vulgare L. and Dittrichia viscosa (L.) Greuter from two selected wetlands in northwest Algeria subjected to house and industrial effluents were examined to assess their arbuscular mycorrhizal fungal (AMF) diversity and colonization, as well as to determine their tolerance and ability in accumulating metallic trace elements (MTEs). The purpose was to investigate whether, or not, these fungi are related to metallic uptake. Arbuscular mycorrhizal association was observed in all plant species, since the dual association between AMF and dark septate endophytes (DSE) was found in roots of 80% plants species. Hence, the decreasing trend of metal accumulation in most plant organs was Zn>Cu>Pb. and the most efficient species were M. vulgare> S. fruticosa> A. canescens> D. viscosa>A. halimus. The bioaccumulator factors exceeded the critical value (1.0) and the transport factors indicated that all these species were phytoremediators. Pearson correlation showed that Cd bioaccumulation and translocation were inhibited by AMF infection: meanwhile Zn, Pb and Cd accumulation were affected by AMF spore density and species richness, DSE frequency, pH, AMF and plant host. Native halophytes showed a multi-metallic resistance capacity in polluted wetlands. M. vulgare was the most efficient in metal accumulation and the best host for mycorrhizal fungi. AMF played a major role in metal accumulation and translocation.
引用
下载
收藏
页码:103 / 114
页数:12
相关论文
共 50 条
  • [31] Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi
    Ruscitti, Marcela
    Arango, Maria
    Beltrano, Jose
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2017, 29 (01): : 37 - 49
  • [32] Improvement of copper stress tolerance in pepper plants (Capsicum annuum L.) by inoculation with arbuscular mycorrhizal fungi
    Marcela Ruscitti
    María Arango
    José Beltrano
    Theoretical and Experimental Plant Physiology, 2017, 29 : 37 - 49
  • [33] Epiparasitic plants specialized on arbuscular mycorrhizal fungi
    Bidartondo, MI
    Redecker, D
    Hijri, I
    Wiemken, A
    Bruns, TD
    Domínguez, L
    Sérsic, A
    Leake, JR
    Read, DJ
    NATURE, 2002, 419 (6905) : 389 - 392
  • [34] Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress
    Hu, Shanshan
    Hu, Bo
    Chen, Zhongbing
    Vosatka, Miroslav
    Vymazal, Jan
    ENVIRONMENTAL RESEARCH, 2020, 191
  • [35] INTERACTIONS BETWEEN PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI
    Hata, Shingo
    Kobae, Yoshihiro
    Banba, Mari
    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 281, 2010, 281 : 1 - 48
  • [36] Epiparasitic plants specialized on arbuscular mycorrhizal fungi
    Martin I. Bidartondo
    Dirk Redecker
    Isabelle Hijri
    Andres Wiemken
    Thomas D. Bruns
    Laura Domínguez
    Alicia Sérsic
    Jonathan R. Leake
    David J. Read
    Nature, 2002, 419 : 389 - 392
  • [37] Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi
    Pawlowska, TE
    Charvat, I
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (11) : 6643 - 6649
  • [38] dBioregulation Potential of Arbuscular Mycorrhizal Fungi on Heat Stress and Anthracnose Tolerance in Cyclamen
    Matsubara, Y.
    Ishioka, C.
    Maya, M. A.
    Liu, J.
    Takami, Y.
    INTERNATIONAL SYMPOSIUM ON NEW TECHNOLOGIES FOR ENVIRONMENT CONTROL, ENERGY-SAVING AND CROP PRODUCTION IN GREENHOUSE AND PLANT FACTORY - GREENSYS 2013, 2014, 1037 : 813 - 818
  • [39] The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress
    Doubkova, Pavla
    Suda, Jan
    Sudova, Radka
    SOIL BIOLOGY & BIOCHEMISTRY, 2012, 44 (01): : 56 - 64
  • [40] The impact of arbuscular mycorrhizal fungi on strawberry tolerance to root damage and drought stress
    Borowicz, Victoria A.
    PEDOBIOLOGIA, 2010, 53 (04) : 265 - 270