6DoF-SLAM using 3D Point Cloud-based Objects Recognition

被引:0
|
作者
Wang, Jiayi [1 ]
Fujimoto, Yasutaka [1 ]
Iwanaga, Yoshihiro [2 ]
Miyamoto, Shunsuke [2 ]
机构
[1] Yokohama Natl Univ, 79-5 Tokiwadai,Hodogaya ku, Yokohama, Kanagawa 2408501, Japan
[2] KOMATSU, 1200 Manda, Yokohama, Kanagawa 2548567, Japan
关键词
robot sensing system; simultaneous localization and mapping; computer vision; REGISTRATION; SLAM;
D O I
10.1541/ieejjia.21013114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method for three-dimensional (3D) point cloud-based object recognition and a method that uses the recognized objects for six-degree-of-freedom simultaneous localization and mapping (SLAM) with a high accuracy are presented. For object recognition, we use a convolutional neural network to identify the meaning of each point inside an input 3D point cloud. For scan registration, we present a highly accurate hybrid method that combines the iterative closest point with particle swarm optimization (PSO) to match the recognized points to be archived. Using PSO to match the recognized object's points in each neighboring scan can help decrease incorrect correspondences and enhance the robustness of scan matching. Compared to state-of-art methods, the proposed method achieved good performance on the KITTI odometry benchmark and our SLAM experiments.
引用
收藏
页码:752 / 762
页数:11
相关论文
共 50 条
  • [1] 3D point cloud-based place recognition: a survey
    Luo, Kan
    Yu, Hongshan
    Chen, Xieyuanli
    Yang, Zhengeng
    Wang, Jingwen
    Cheng, Panfei
    Mian, Ajmal
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [2] 3D point cloud-based place recognition: a survey
    Kan Luo
    Hongshan Yu
    Xieyuanli Chen
    Zhengeng Yang
    Jingwen Wang
    Panfei Cheng
    Ajmal Mian
    [J]. Artificial Intelligence Review, 57
  • [3] RGB-D Sensor Based Real-time 6DoF-SLAM
    Chen, Hsi-Yuan
    Lin, Chyi-Yeu
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND INTELLIGENT SYSTEMS (ARIS 2014), 2014, : 61 - 65
  • [4] Inferring quality in point cloud-based 3D printed objects using topological data analysis
    Rosen, Paul
    Hajij, Mustafa
    Tu, Junyi
    Arafin, Tanvirul
    Piegl, Les
    [J]. Computer-Aided Design and Applications, 2019, 16 (03): : 519 - 527
  • [5] Point-SLAM: Dense Neural Point Cloud-based SLAM
    Sandstrom, Erik
    Li, Yue
    Van Gool, Luc
    Oswald, Martin R.
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18387 - 18398
  • [6] A Feature Based Laser SLAM Using Rasterized Images of 3D Point Cloud
    Ali, Waqas
    Liu, Peilin
    Ying, Rendong
    Gong, Zheng
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (21) : 24422 - 24430
  • [7] 3D Point Cloud-Based Indoor Mobile Robot in 6-DoF Pose Localization Using a Wi-Fi-Aided Localization System
    Shu, Mingcong
    Chen, Guoliang
    Zhang, Zhenghua
    [J]. IEEE ACCESS, 2021, 9 : 38636 - 38648
  • [8] 3D Point Cloud Based Indoor Mobile Robot in 6-DoF Pose Localization Using Fast Scene Recognition and Alignment Approach
    Luo, Ren C.
    Ee, Vincent W. S.
    Hsieh, Chung-Kai
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 470 - 475
  • [9] A Review: Point Cloud-Based 3D Human Joints Estimation
    Xu, Tianxu
    An, Dong
    Jia, Yuetong
    Yue, Yang
    [J]. SENSORS, 2021, 21 (05) : 1 - 32
  • [10] 3D Laser Point Cloud-based Navigation in Complex Environment
    Yang Yi
    Fu Mengyin
    Wang Wei
    Yang Xin
    Zhu Hao
    [J]. PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 3798 - 3803