Inferring quality in point cloud-based 3D printed objects using topological data analysis

被引:0
|
作者
Rosen P. [1 ]
Hajij M. [1 ]
Tu J. [1 ]
Arafin T. [1 ]
Piegl L. [1 ]
机构
[1] University of South Florida, United States
来源
基金
美国国家科学基金会;
关键词
3D printing; Point cloud; Topological data analysis;
D O I
10.14733/cadaps.2019.519-527
中图分类号
学科分类号
摘要
Assessing the quality of 3D printed models before they are printed remains a challenging problem, particularly when considering point cloud-based models. This paper introduces an approach to quality assessment, which uses techniques from the field of Topological Data Analysis (TDA) to compute a topological abstraction of the eventual printed model. Two main tools of TDA, Mapper and persistent homology, are used to analyze both the printed space and empty space created by the model. This abstraction enables investigating certain qualities of the model, with respect to print quality, and identifies potential anomalies that may appear in the final product. © 2019 CAD Solutions, LLC.
引用
收藏
页码:519 / 527
页数:8
相关论文
共 50 条
  • [1] 6DoF-SLAM using 3D Point Cloud-based Objects Recognition
    Wang, Jiayi
    Fujimoto, Yasutaka
    Iwanaga, Yoshihiro
    Miyamoto, Shunsuke
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2022, 11 (06) : 752 - 762
  • [2] 3D point cloud-based place recognition: a survey
    Luo, Kan
    Yu, Hongshan
    Chen, Xieyuanli
    Yang, Zhengeng
    Wang, Jingwen
    Cheng, Panfei
    Mian, Ajmal
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [3] 3D point cloud-based place recognition: a survey
    Kan Luo
    Hongshan Yu
    Xieyuanli Chen
    Zhengeng Yang
    Jingwen Wang
    Panfei Cheng
    Ajmal Mian
    Artificial Intelligence Review, 57
  • [4] 3D Point Cloud Segmentation Using Topological Persistence
    Beksi, William J.
    Papanikolopoulos, Nikolaos
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 5046 - 5051
  • [5] Projected area measurement of complex 3D objects based on point cloud data
    Qian, Lujing
    Yang, Yubang
    Sun, Shuyu
    Huang, Tengchao
    AOPC 2021: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2021, 12065
  • [6] A Review: Point Cloud-Based 3D Human Joints Estimation
    Xu, Tianxu
    An, Dong
    Jia, Yuetong
    Yue, Yang
    SENSORS, 2021, 21 (05) : 1 - 32
  • [7] 3D Laser Point Cloud-based Navigation in Complex Environment
    Yang Yi
    Fu Mengyin
    Wang Wei
    Yang Xin
    Zhu Hao
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 3798 - 3803
  • [8] Point Cloud-based 3D Underwater Pose Estimation Using RANSAC and VFH Descriptors
    Wang, Quanfeng
    Zhang, Yuanxu
    Li, Chen
    Gao, Jian
    2021 IEEE/ACIS 21ST INTERNATIONAL FALL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2021-FALL), 2021, : 258 - 263
  • [9] Cloud-based collaborative 3D reconstruction using smartphones
    Poiesi, Fabio
    Locher, Alex
    Chippendale, Paul
    Nocerino, Erica
    Remondino, Fabio
    Van Gool, Luc
    14TH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION (CVMP), 2017,
  • [10] Automated Quality Inspection of Formwork Systems Using 3D Point Cloud Data
    Wu, Keyi
    Prieto, Samuel A.
    Mengiste, Eyob
    de Soto, Borja Garcia
    BUILDINGS, 2024, 14 (04)