Recycling waste crystalline-silicon solar cells: Application as high performance Si-based anode materials for lithium-ion batteries

被引:1
|
作者
Wang Qi [1 ]
Meng Bi-cheng [2 ]
Du Yue-yong [1 ]
Xu Xiang-qun [1 ]
Zhou Zhe [1 ]
Ng, Boon K. [3 ]
Zhang Zong-liang [4 ]
Jiang Liang-xing [1 ]
Liu Fang-yang [1 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Met Engn, Xian 710311, Peoples R China
[3] Cent Queensland Univ, Sch Engn & Technol, Mackay, Qld 4740, Australia
[4] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
基金
中国国家自然科学基金;
关键词
waste solar panels; recycling; Si-based anodes; lithium-ion batteries; COMPOSITE; NANOPARTICLES; CARBON; MICROSPHERES;
D O I
10.1007/s11771-022-5144-0
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Recycling useful materials such as Ag, Al, Sn, Cu and Si from waste silicon solar cell chips is a sustainable project to slow down the ever-growing amount of waste crystalline-silicon photovoltaic panels. However, the recovery cost of the above-mentioned materials from silicon chips via acid-alkaline treatments outweights the gain economically. Herein, we propose a new proof-of-concept to fabricate Si-based anodes with waste silicon chips as raw materials. Nanoparticles from waste silicon chips were prepared with the high-energy ball milling followed by introducing carbon nanotubes and N-doped carbon into the nanoparticles, which amplifies the electrochemical properties. It is explored that Al and Ag elements influenced electrochemical performance respectively. The results showed that the Al metal in the composite possesses an adverse impact on the electrochemical performance. After removing Al, the composite was confirmed to possess a pronounced durable cycling property due to the presence of Ag, resulting in significantly more superior property than the composite having both Al and Ag removed.
引用
收藏
页码:2888 / 2898
页数:11
相关论文
共 50 条
  • [31] Novel approach for improving the performance of Si-based anodes in lithium-ion batteries
    Sadeghipari, M.
    Mashayekhi, A.
    Mohajerzadeh, S.
    NANOTECHNOLOGY, 2018, 29 (05)
  • [32] Preparation of layered Si materials as anode for lithium-ion batteries
    Gao, Runsheng
    Tang, Jie
    Terabe, Kazuya
    Yu, Xiaoliang
    Sasaki, Taizo
    Hashimoto, Ayako
    Asano, Kazuko
    Suzuki, Masa-aki
    Nakura, Kensuke
    CHEMICAL PHYSICS LETTERS, 2019, 730 : 198 - 205
  • [33] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [34] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [35] Cycling parameters of silicon anode materials for lithium-ion batteries
    S. P. Kuksenko
    Russian Journal of Applied Chemistry, 2010, 83 : 641 - 647
  • [36] Cycling Parameters of Silicon Anode Materials for Lithium-Ion Batteries
    Kuksenko, S. P.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2010, 83 (04) : 641 - 647
  • [37] Research on Recycling and Resume of Anode Materials for Spent Lithium-Ion Batteries
    Wang G.
    Xu Z.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (07): : 1005 - 1012
  • [38] Recycling Silicon Waste from the Photovoltaic Industry to Prepare Yolk-Shell Si@void@C Anode Materials for Lithium-Ion Batteries
    Ji, Hengsong
    Liu, Zhijin
    Li, Xiang
    Li, Jun
    Yan, Zexuan
    Tang, Kai
    PROCESSES, 2023, 11 (06)
  • [39] Ionothermal Synthesis of Crystalline Nanoporous Silicon and Its Use as Anode Materials in Lithium-Ion Batteries
    Wang, Fei
    Zhao, Baoxun
    Zi, Wenwen
    Du, Hongbin
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [40] Ionothermal Synthesis of Crystalline Nanoporous Silicon and Its Use as Anode Materials in Lithium-Ion Batteries
    Fei Wang
    Baoxun Zhao
    Wenwen Zi
    Hongbin Du
    Nanoscale Research Letters, 2019, 14