CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis

被引:4
|
作者
Lombardi, Lisa [1 ]
Bergin, Sean A. A. [1 ]
Ryan, Adam [1 ]
Zuniga-Soto, Evelyn [1 ]
Butler, Geraldine [1 ]
机构
[1] Univ Coll Dublin, Conway Inst, Sch Biomol & Biomed Sci, Belfield, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
CRISPR-Cas9; Candida parapsilosis; loss of heterozygosity; genome editing; IN-VIVO; ALBICANS; ANEUPLOIDY;
D O I
10.1128/msphere.00393-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9.IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Survey of Validation Strategies for CRISPR-Cas9 Editing
    Monica F. Sentmanat
    Samuel T. Peters
    Colin P. Florian
    Jon P. Connelly
    Shondra M. Pruett-Miller
    Scientific Reports, 8
  • [22] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [23] CRISPR-Cas9 Genome Editing of Plasmodium knowlesi
    Mohring, Franziska
    Hart, Melissa N.
    Patel, Avnish
    Baker, David A.
    Moon, Robert W.
    BIO-PROTOCOL, 2020, 10 (04):
  • [24] CRISPR-cas9 Gene Editing for Cystic Fibrosis
    Xia, Emily
    MOLECULAR THERAPY, 2019, 27 (04) : 196 - 196
  • [25] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    BIOINFORMATION, 2022, 18 (11) : 1081 - 1086
  • [26] Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system
    Ludovic Enkler
    Delphine Richer
    Anthony L. Marchand
    Dominique Ferrandon
    Fabrice Jossinet
    Scientific Reports, 6
  • [27] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Yuta Nihongaki
    Fuun Kawano
    Takahiro Nakajima
    Moritoshi Sato
    Nature Biotechnology, 2015, 33 : 755 - 760
  • [28] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [29] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [30] CRISPR-Cas9 gene editing for patients with haemoglobinopathies
    不详
    LANCET HAEMATOLOGY, 2019, 6 (09): : E438 - E438