ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy

被引:8
|
作者
Rundo, Leonardo [1 ,2 ]
Tangherloni, Andrea [3 ,4 ,5 ]
Tyson, Darren R. [6 ]
Betta, Riccardo [7 ]
Militello, Carmelo [8 ]
Spolaor, Simone [7 ]
Nobile, Marco S. [9 ,10 ]
Besozzi, Daniela [7 ]
Lubbock, Alexander L. R. [6 ]
Quaranta, Vito [6 ]
Mauri, Giancarlo [7 ,10 ]
Lopez, Carlos F. [6 ]
Cazzaniga, Paolo [10 ,11 ]
机构
[1] Univ Cambridge, Dept Radiol, Cambridge CB2 0QQ, England
[2] Univ Cambridge, Canc Res UK Cambridge Ctr, Cambridge CB2 0RE, England
[3] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England
[4] Wellcome Trust Sanger Inst, Wellcome Trust Genome Campus, Hinxton CB10 1HH, England
[5] Stem Cell Inst, Med Res Council Cambridge, Wellcome Trust, Cambridge CB2 0AW, England
[6] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA
[7] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20126 Milan, Italy
[8] Italian Natl Res Council, Inst Mol Bioimaging & Physiol, I-90015 Cefalu, PA, Italy
[9] Eindhoven Univ Technol, Dept Ind Engn & Innovat Sci, NL-5612 AZ Eindhoven, Netherlands
[10] SYSBIO ISBEIT Ctr Syst Biol, I-20126 Milan, Italy
[11] Univ Bergamo, Dept Human & Social Sci, I-24129 Bergamo, Italy
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 18期
基金
美国国家卫生研究院;
关键词
bioimage informatics; time-lapse microscopy; fluorescence imaging; cell counting; nuclei segmentation; BIOIMAGE INFORMATICS; IMAGE SEGMENTATION; DYNAMICS; PATTERNS; DISTANCE; NUCLEI; AREA;
D O I
10.3390/app10186187
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application: Novel method for Automated Cell Detection and Counting (ACDC) in time-lapse fluorescence microscopy. Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a3.7xspeed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of76.84and88.64and the Pearson coefficients of0.99and0.96, calculated against the manual cell counting, on the two tested datasets.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Data Descriptor: Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations
    Ker, Dai Fei Elmer
    Eom, Sungeun
    Sanami, Sho
    Bise, Ryoma
    Pascale, Corinne
    Yin, Zhaozheng
    Huh, Seung-il
    Osuna-Highley, Elvira
    Junkers, Silvina N.
    Helfrich, Casey J.
    Yongwen, Peter
    Pan, Liang Jiyan
    Jeong, Soojin
    Kang, Steven S.
    Liu, Jinyu
    Nicholson, Ritchie
    Sandbothe, Michael F.
    Van, Phu T.
    Liu, Anan
    Chen, Mei
    Kanade, Takeo
    Weiss, Lee E.
    Campbell, Phil G.
    SCIENTIFIC DATA, 2018, 5
  • [42] Evaluating the Effects of Disinfectants on Bacterial Biofilms Using a Microfluidics Flow Cell and Time-Lapse Fluorescence Microscopy
    Legner, Milos
    Jonkman, James
    Swift, Dean
    MICROORGANISMS, 2020, 8 (11) : 1 - 22
  • [43] Automated quantification of cardiomyocytes beating profile with time-lapse digital holographic microscopy
    Moon, Inkyu
    Jaferzadeh, Keyvan
    THREE-DIMENSIONAL IMAGING, VISUALIZATION, AND DISPLAY 2018, 2018, 10666
  • [44] Comparative evaluation of performance measures for shading correction in time-lapse fluorescence microscopy
    Liu, L.
    Kan, A.
    Leckie, C.
    Hodgkin, P. D.
    JOURNAL OF MICROSCOPY, 2017, 266 (01) : 15 - 27
  • [45] Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
    Young, Jonathan W.
    Locke, James C. W.
    Altinok, Alphan
    Rosenfeld, Nitzan
    Bacarian, Tigran
    Swain, Peter S.
    Mjolsness, Eric
    Elowitz, Michael B.
    NATURE PROTOCOLS, 2012, 7 (01) : 80 - 88
  • [46] Comparative evaluation of performance measures for shading correction in time-lapse fluorescence microscopy
    Liu, L.
    Kan, A.
    Leckie, C.
    Hodgkin, P.D.
    Journal of Microscopy, 2017, 266 (01): : 15 - 27
  • [47] A variational model for level-set based cell tracking in time-lapse fluorescence microscopy images
    Dzyubachyk, Oleh
    Niessen, Wiro
    Meijering, Erik
    2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 97 - 100
  • [48] AUTOMATIC SEGMENTATION OF EMBRYONIC HEART IN TIME-LAPSE FLUORESCENCE MICROSCOPY IMAGE SEQUENCES
    Kramer, P.
    Boto, F.
    Wald, D.
    Bessy, F.
    Paloc, C.
    Callol, C.
    Letamendia, A.
    Ibarbia, I.
    Holgado, O.
    Virto, J. M.
    BIOSIGNALS 2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, 2010, : 121 - 126
  • [49] Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
    Jonathan W Young
    James C W Locke
    Alphan Altinok
    Nitzan Rosenfeld
    Tigran Bacarian
    Peter S Swain
    Eric Mjolsness
    Michael B Elowitz
    Nature Protocols, 2012, 7 : 80 - 88
  • [50] Apoptosis Detection for Adherent Cell Populations in Time-Lapse Phase-Contrast Microscopy Images
    Huh, Seungil
    Ker, Dai Fei Elmer
    Su, Hang
    Kanade, Takeo
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT I, 2012, 7510 : 331 - 339