CONVERGENCE OF REGULARIZED TIME-STEPPING METHODS FOR DIFFERENTIAL VARIATIONAL INEQUALITIES
被引:51
|
作者:
Chen, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Chen, Xiaojun
[1
]
Wang, Zhengyu
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210008, Jiangsu, Peoples R ChinaHong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
Wang, Zhengyu
[2
]
机构:
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210008, Jiangsu, Peoples R China
This paper provides convergence analysis of regularized time-stepping methods for the differential variational inequality (DVI), which consists of a system of ordinary differential equations and a parametric variational inequality (PVI) as the constraint. The PVI often has multiple solutions at each step of a time-stepping method, and it is hard to choose an appropriate solution for guaranteeing the convergence. In [L. Han, A. Tiwari, M. K. Camlibel and J.-S. Pang, SIAM J. Numer. Anal., 47 (2009) pp. 3768-3796], the authors proposed to use "least-norm solutions" of parametric linear complementarity problems at each step of the time-stepping method for the monotone linear complementarity system and showed the novelty and advantages of the use of the least-norm solutions. However, in numerical implementation, when the PVI is not monotone and its solution set is not convex, finding a least-norm solution is difficult. This paper extends the Tikhonov regularization approximation to the P-O-function DVI, which ensures that the PVI has a unique solution at each step of the regularized time-stepping method. We show the convergence of the regularized time-stepping method to a weak solution of the DVI and present numerical examples to illustrate the convergence theorems.
机构:
Universidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, ArgentinaUniversidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, Argentina
Actis, Marcelo
Gaspoz, Fernando
论文数: 0引用数: 0
h-index: 0
机构:
Universidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, ArgentinaUniversidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, Argentina
Gaspoz, Fernando
Morin, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
Universidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, ArgentinaUniversidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, Argentina
Morin, Pedro
Schneider, Cornelia
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Applied Mathematics III, Cauerstr. 11, Erlangen,91058, GermanyUniversidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, Argentina
Schneider, Cornelia
Schneider, Nick
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Applied Mathematics III, Cauerstr. 11, Erlangen,91058, GermanyUniversidad Nacional del Litoral, CONICET, Departamento de Matemática, Faculdad de Ingeniería Química, S3000AOM, Santa Fe, Argentina
机构:
Univ Nacl Litoral, Dept Matemat, Fac Ingn Quim, S3000AOM, Santa Fe, Argentina
Consejo Nacl Invest Cient & Tecn, S3000AOM, Santa Fe, ArgentinaUniv Nacl Litoral, Dept Matemat, Fac Ingn Quim, S3000AOM, Santa Fe, Argentina
Actis, Marcelo
Morin, Pedro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Litoral, Dept Matemat, Fac Ingn Quim, S3000AOM, Santa Fe, Argentina
Consejo Nacl Invest Cient & Tecn, S3000AOM, Santa Fe, ArgentinaUniv Nacl Litoral, Dept Matemat, Fac Ingn Quim, S3000AOM, Santa Fe, Argentina
Morin, Pedro
Schneider, Cornelia
论文数: 0引用数: 0
h-index: 0
机构:
Friedrich Alexander Univ Erlangen Nuremberg, Appl Math 3, Cauerstr 11, D-91058 Erlangen, GermanyUniv Nacl Litoral, Dept Matemat, Fac Ingn Quim, S3000AOM, Santa Fe, Argentina
机构:
Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
Francophone Ctr Mathemat Bucharest, RO-014700 Bucharest, RomaniaRomanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania