Elliptic surfaces and contact conics for a 3-nodal quartic

被引:0
|
作者
Tumenbayar, Khulan [1 ]
Tokunaga, Hiro-o [2 ]
机构
[1] Natl Univ Mongolia, Sch Arts & Sci, Dept Math, Ikh Surguuliin Gudamj 1,POB 46A-523, Ulaanbaatar 210646, Mongolia
[2] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji 1920397, Japan
关键词
Elliptic surface; section; contact conic; Zariski pair; ARRANGEMENTS; SECTIONS;
D O I
10.14492/hokmj/1520928068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Q be an irreducible 3-nodal quartic and let C be a smooth conic such that C boolean AND Q does not contain any node of Q and the intersection multiplicity at z is an element of C boolean AND Q is even for each z. In this paper, we study geometry of C vertical bar Q through that of integral sections of a rational elliptic surface which canonically arises from Q and z is an element of C boolean AND Q. As an application, we construct Zariski pairs (C-1 + Q, C-2 + Q), where C-i (i = 1, 2) are smooth conics tangent to Q at four distinct points.
引用
收藏
页码:223 / 244
页数:22
相关论文
共 50 条
  • [11] On nodal Enriques surfaces and quartic double solids
    Ingalls, Colin
    Kuznetsov, Alexander
    MATHEMATISCHE ANNALEN, 2015, 361 (1-2) : 107 - 133
  • [12] On nodal Enriques surfaces and quartic double solids
    Colin Ingalls
    Alexander Kuznetsov
    Mathematische Annalen, 2015, 361 : 107 - 133
  • [13] ENUMERATION OF SURFACES CONTAINING AN ELLIPTIC QUARTIC CURVE
    Cukierman, F.
    Lopez, A. F.
    Vainsencher, I.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3305 - 3313
  • [14] Elliptic fibrations on quartic K3 surfaces with large picard numbers
    Kuwata, M
    PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (01) : 231 - 243
  • [15] TWO RATIONAL NODAL QUARTIC 3-FOLDS
    Cheltsov, Ivan
    Shramov, Constantin
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (04): : 573 - 601
  • [16] 15-Nodal quartic surfaces. Part II: the automorphism group
    Igor Dolgachev
    Ichiro Shimada
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1165 - 1191
  • [17] 15-Nodal quartic surfaces. Part II: the automorphism group
    Dolgachev, Igor
    Shimada, Ichiro
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1165 - 1191
  • [18] K3 polytopes and their quartic surfaces
    Balletti, Gabriele
    Panizzut, Marta
    Sturmfels, Bernd
    ADVANCES IN GEOMETRY, 2021, 21 (01) : 85 - 98
  • [19] Convergence studies for 3D smooth frictional contact elements based on the quartic Bezier surfaces
    Krstulovic-Opara, L
    Wriggers, P
    CONTACT MECHANICS, 2002, : 371 - 378
  • [20] On certain of Mordel's elliptic surfaces and elliptic curves of rank ≥1 associated with the discriminants of cubic and quartic polynomials
    Leprévost, F
    Fermigier, S
    Fieker, C
    JOURNAL OF NUMBER THEORY, 1999, 78 (01) : 149 - 165