On the disentanglement of Gaussian quantum states by symplectic rotations

被引:1
|
作者
de Gosson, Maurice A. [1 ]
机构
[1] Univ Wien, Fak Math NuHAG, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
D O I
10.5802/crmath.57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every Gaussian mixed quantum state can be disentangled by conjugation with a unitary operator corresponding to a symplectic rotation via the metaplectic representation of the symplectic group. The main tools we use are the Werner-Wolf condition for separability on covariance matrices and the symplectic covariance of Weyl pseudo-differential operators.
引用
收藏
页码:459 / 462
页数:4
相关论文
共 50 条
  • [21] Symmetric split disentanglement, symplectic integrators and evolution problems
    Dattoli, G
    Giannessi, L
    Ottaviani, PL
    Quattromini, M
    Torre, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (04): : 531 - 541
  • [22] Spectroscopic disentanglement of the quantum states of highly excited Cu2
    Beck, M.
    Bornhauser, P.
    Visser, Bradley
    Knopp, G.
    van Bokhoven, J. A.
    Radi, P. P.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [23] Symplectic Integrators: Rotations and Roundoff Errors
    Jean-Marc Petit
    Celestial Mechanics and Dynamical Astronomy, 1998, 70 : 1 - 21
  • [24] Disentanglement, disorder lines, and Majorana edge states in a solvable quantum chain
    Chitov, Gennady Y.
    Gadge, Karun
    Timonin, P. N.
    PHYSICAL REVIEW B, 2022, 106 (12)
  • [25] Transformation of quantum states using uniformly controlled rotations
    Möttönen, M
    Vartiainen, JJ
    Bergholm, V
    Salomaa, MM
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (06) : 467 - 473
  • [26] Quantum disentanglement and computation
    Peres, A
    SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (3-4) : 373 - 379
  • [27] A characterization of modulation spaces by symplectic rotations
    Cordero, Elena
    de Gosson, Maurice
    Nicola, Fabio
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (11)
  • [28] Symplectic integrators: Rotations and roundoff errors
    Petit, JM
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 70 (01): : 1 - 21
  • [29] Elementary quantum gates with Gaussian states
    Podoshvedov, Sergey A.
    Kim, Jaewan
    Kim, Kisik
    QUANTUM INFORMATION PROCESSING, 2014, 13 (08) : 1723 - 1749
  • [30] Elementary quantum gates with Gaussian states
    Sergey A. Podoshvedov
    Jaewan Kim
    Kisik Kim
    Quantum Information Processing, 2014, 13 : 1723 - 1749