On the disentanglement of Gaussian quantum states by symplectic rotations

被引:1
|
作者
de Gosson, Maurice A. [1 ]
机构
[1] Univ Wien, Fak Math NuHAG, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
D O I
10.5802/crmath.57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every Gaussian mixed quantum state can be disentangled by conjugation with a unitary operator corresponding to a symplectic rotation via the metaplectic representation of the symplectic group. The main tools we use are the Werner-Wolf condition for separability on covariance matrices and the symplectic covariance of Weyl pseudo-differential operators.
引用
收藏
页码:459 / 462
页数:4
相关论文
共 50 条
  • [1] Gaussian quantum states can be disentangled using symplectic rotations
    de Gosson M.A.
    Letters in Mathematical Physics, 2021, 111 (3)
  • [2] GAUSSIAN PURE STATES IN QUANTUM-MECHANICS AND THE SYMPLECTIC GROUP
    SIMON, R
    SUDARSHAN, ECG
    MUKUNDA, N
    PHYSICAL REVIEW A, 1988, 37 (08): : 3028 - 3038
  • [3] Disentanglement Cost of Quantum States
    Berta, Mario
    Majenz, Christian
    PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [4] SYMPLECTIC DILATIONS, GAUSSIAN STATES AND GAUSSIAN CHANNELS
    Parthasarathy, K. R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (04): : 419 - 439
  • [5] Symplectic dilations, Gaussian states and Gaussian channels
    K. R. Parthasarathy
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 419 - 439
  • [6] Parametric randomization, complex symplectic factorizations, and quadratic-exponential functionals for Gaussian quantum states
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2019, 22 (03)
  • [7] Disentanglement of pure bipartite quantum states by local cloning
    Department of Physics, Bose Institute, 93/1 A.P.C. Road, Calcutta-700009, India
    不详
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (205-209):
  • [8] Disentanglement of pure bipartite quantum states by local cloning
    Bandyopadhyay, S
    Kar, G
    Roy, A
    PHYSICS LETTERS A, 1999, 258 (4-6) : 205 - 209
  • [9] Locally optimal symplectic control of multimode Gaussian states
    Shackerley-Bennett, Uther
    Carlini, Alberto
    Giovannetti, Vittorio
    Serafini, Alessio
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (04):
  • [10] Symplectic invariants, entropic measures and correlations of Gaussian states
    Serafini, A
    Illuminati, F
    De Siena, S
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (02) : L21 - L28