Atomic Hydrogen Diffusion on Doped and Chemically Modified Graphene

被引:25
|
作者
Lueking, Angela D. [1 ,2 ,3 ]
Psofogiannakis, George [1 ]
Froudakis, George E. [1 ]
机构
[1] Univ Crete, Dept Chem, Iraklion 71003, Greece
[2] Penn State Univ, Dept Chem Engn, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[3] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2013年 / 117卷 / 12期
关键词
DISSOCIATIVE CHEMISORPTION; BASIS-SETS; STORAGE; SPILLOVER; ADSORPTION; CARBON; APPROXIMATION; RECOMBINATION; PROGRAM; ENERGY;
D O I
10.1021/jp4007763
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To explore hydrogen mobility on graphene, density functional calculations are used to determine the magnitude of binding energy versus the diffusion barrier for graphene, considering the effects of hole and electron doping, B and N substitutional dopants, and oxygen heteroatoms. Although C-H binding energy and the barrier for chemical diffusion are not correlated, the binding energy of H in the lowest energy site on top of a C atom correlates with the binding energy of H over a "bridge" C-C bond, which is the transition state for chemical diffusion. Using this framework, we demonstrate that both B substitutionally doped graphene and hydoxylated graphene have the potential to simultaneously meet thermodynamic and kinetic constraints for reversible room-temperature hydrogenation. The constraints demonstrate that reversible room-temperature hydrogenation is possible only when H diffuses in a chemically bound state.
引用
收藏
页码:6312 / 6319
页数:8
相关论文
共 50 条
  • [21] Aptasensor Based on Graphene Chemically Modified Electrode
    Wang Yan-Ping
    Xiao Ying-Hong
    Wu Min
    Lu Tian-Hong
    Yang Xiao-Di
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (03) : 437 - 441
  • [22] Role of atomic hydrogen diffusion in a hydrogen flame
    Bunev, V. A.
    Panfilov, V. N.
    Babkin, V. S.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2007, 43 (02) : 125 - 131
  • [23] DNA Origami Nanopatterning on Chemically Modified Graphene
    Yun, Je Moon
    Kim, Kyoung Nan
    Kim, Ju Young
    Shin, Dong Ok
    Lee, Won Jun
    Lee, Sun Hwa
    Lieberman, Marya
    Kim, Sang Ouk
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (04) : 912 - 915
  • [24] Size sorting of chemically modified graphene nanoplatelets
    Han, Joong Tark
    Jang, Jeong In
    Kim, Sung Hun
    Jeong, Seung Yol
    Jeong, Hee Jin
    Lee, Geon-Woong
    CARBON LETTERS, 2013, 14 (02) : 89 - 93
  • [25] Assembly of chemically modified graphene: methods and applications
    Xu, Yuxi
    Shi, Gaoquan
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (10) : 3311 - 3323
  • [26] DIFFUSION OF WATER AND ALCOHOL IN CHEMICALLY MODIFIED POLYURETHANE
    SREENIVASAN, K
    POLYMER INTERNATIONAL, 1993, 30 (03) : 363 - 365
  • [27] Storage of atomic hydrogen in multilayer graphene
    Baird, Anthony
    Andrews, John
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (72) : 27944 - 27959
  • [28] Atomic Hydrogen Adsorbate Structures on Graphene
    Balog, Richard
    Jorgensen, Bjarke
    Wells, Justin
    Laegsgaard, Erik
    Hofmann, Philip
    Besenbacher, Flemming
    Hornekaer, Liv
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8744 - +
  • [29] Viscosity and diffusion coefficients of atomic hydrogen and atomic deuterium
    Amdur, I
    JOURNAL OF CHEMICAL PHYSICS, 1936, 4 (06): : 339 - 343
  • [30] The binding of atomic hydrogen on graphene from density functional theory and diffusion Monte Carlo calculations
    Dumi, Amanda
    Upadhyay, Shiv
    Bernasconi, Leonardo
    Shin, Hyeondeok
    Benali, Anouar
    Jordan, Kenneth D.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (14):