Energy Profile Forecast Based on Multivariate Time Series

被引:0
|
作者
Xing, Tangdong [1 ]
机构
[1] North China Elect Power Univ, Baoding 071000, Hebei, Peoples R China
关键词
Multivariate Time Series; Energy Profile; Energy Forecast; COINTEGRATION; CONSUMPTION;
D O I
10.1063/1.5089099
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy is not only an important material basis for economic development and social progress, but also a significant factor affecting the living environment of human beings. First of all, we preprocess the raw data and screen out seven variables, then we bring them into two categories of conventional energy and new energy. Secondly, based on the linear positive correlation between new energy and conventional energy, the time series model is used to summarize the energy development trend. Thirdly, we use the analytic hierarchy process (AHP) to take the best state of energy using as the target layer, the clean energy as the criterion layer, the four states as policy makers, furthermore, we calculate the weight coefficient through judgment matrix, finally we come to California for the best clean energy using state. Finally, considering the population, climate, geographical environment and other influencing factors, we use the time series prediction model to predict the year 2025 and 2050.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Developing a Multivariate Time-Series Model to Forecast the Level of Competition in Transportation Projects
    Baek, Minsoo
    Ashuri, Baabak
    Veeravenkatappa, Suma
    CONSTRUCTION RESEARCH CONGRESS 2022: PROJECT MANAGEMENT AND DELIVERY, CONTRACTS, AND DESIGN AND MATERIALS, 2022, : 283 - 291
  • [22] Correlation based dynamic time warping of multivariate time series
    Banko, Zoltan
    Abonyi, Janos
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (17) : 12814 - 12823
  • [23] Multivariate Prediction of Energy Time Series by Autoencoded LSTM Networks
    Succetti, Federico
    Di Luzio, Francesco
    Ceschini, Andrea
    Rosato, Antonello
    Araneo, Rodolfo
    Panella, Massimo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [24] Similarity Measure of Multivariate Time Series Based on Segmentation
    Li, Zhengxin
    Liu, Jia
    Zhang, Xiaofeng
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 47 - 51
  • [25] Wavelets-based clustering of multivariate time series
    D'Urso, Pierpaolo
    Maharaj, Elizabeth Ann
    FUZZY SETS AND SYSTEMS, 2012, 193 : 33 - 61
  • [26] Analysis of multivariate time series predictability based on their features
    Kovantsev, Anton
    Gladilin, Peter
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 348 - 355
  • [27] Clustering multivariate time series based on Riemannian manifold
    Sun, Jiancheng
    ELECTRONICS LETTERS, 2016, 52 (19) : 1607 - 1609
  • [28] Interaction-based Clustering of Multivariate Time Series
    Plant, Claudia
    Wohlschlaeger, Afra M.
    Zherdin, Andrew
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 914 - 919
  • [29] Multivariate time series clustering based on complex network
    Li, Hailin
    Liu, Zechen
    PATTERN RECOGNITION, 2021, 115
  • [30] Multivariate time series classification based on fusion features
    Du, Mingsen
    Wei, Yanxuan
    Hu, Yupeng
    Zheng, Xiangwei
    Ji, Cun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248