Enhancing finite element approximation for eigenvalue problems by projection method

被引:7
|
作者
Liu, Huipo [1 ]
Yan, Ningning [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, LSEC, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element approximation; Projection method; Eigenvalue problems; A posteriori error estimate; Superconvergence; POINTWISE GRADIENT ERROR; A-POSTERIORI ESTIMATORS; QUASI-UNIFORM MESHES; IRREGULAR MESHES; STOKES EQUATIONS; SUPERCONVERGENCE; RECOVERY;
D O I
10.1016/j.cma.2012.04.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes the superconvergence and the related recovery type a posteriori error estimators based on projection method for finite element approximation of the elliptic eigenvalue problems. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The results are based on some regularity assumption for the elliptic problem, and are applicable to the finite element approximations of self-adjoint elliptic eigenvalue problems with general quasi-regular partitions. Therefore, the result of this paper can be employed to provide useful a posteriori error estimators in adaptive finite element computation under unstructured meshes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条
  • [21] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [22] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [23] THE PROJECTION KANTOROVICH METHOD FOR EIGENVALUE PROBLEMS
    LARDY, LJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) : 375 - 384
  • [24] CONVERGENCE OF PROJECTION METHOD IN EIGENVALUE PROBLEMS
    MEDVEDEV, VA
    DOKLADY AKADEMII NAUK SSSR, 1964, 156 (02): : 258 - &
  • [25] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [26] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [27] Finite Element Eigenvalue Method for Solving Phase-Change Problems
    Zhong, Jiakang
    Chow, Louis C.
    Chang, Won Soon
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1991, 5 (04) : 589 - 598
  • [28] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [29] A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    Hong, Qichen
    Xie, Hehu
    Xu, Fei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4208 - A4235
  • [30] A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems
    Liang, Qigang
    Wang, Wei
    Xu, Xuejun
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 606 - 636