HNSleepNet: A Novel Hybrid Neural Network for Home Health-Care Automatic Sleep Staging with Raw Single-Channel EEG

被引:0
|
作者
Chen, Weiwei [1 ]
Yang, Yun [1 ]
Yang, Po [2 ]
机构
[1] Yunnan Univ, Sch Software, Kunming, Yunnan, Peoples R China
[2] Univ Sheffield, Dept Comp, London, England
关键词
Automatic sleep staging; Raw single- channel EEG; Sequence-to-sequence; Hybrid neural network; Smart home healthcare; IDENTIFICATION; RESOURCE; SIGNALS;
D O I
10.1109/INDIN45582.2020.9442118
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Proper scoring of sleep stages may offer more intuitive clinical information for assessing the sleep health and improving the diagnosis of sleep disorders in the smart home healthcare. It usually depends on an accurate analysis of the collected physiological signals, especially for the raw sleep Electroencephalogram (EEG). Most of the methods currently available just rely on the pre-processing or handcrafted features that need prior knowledge and preliminary analysis from the sleep experts and only a few of them take full advantage of the temporal information such as the inter-epoch dependency or transition rules among stages, which are more effective for identifying the differences among the sleep stages. In such cases, we proposed a novel hybrid neural network named HNSleepNet. It utilizes a two-branch CNN with multi-scale convolution kernels to capture the time-invariant features from the adjacent sleep EEG epochs both in time and frequency domains automatically, and attention-based residual encoder-decoder LSTM layers to learn the inter- epoch dependency and transition rules at the Sequence-wise level. After the two-step training, HNSleepNet can perform sequence-to-sequence automatic sleep staging with a raw single channel EEG in an end-to-end way. As the experimental results demonstrated, its performance achieved a better overall accuracy and macro F1-score (MASS: 88%, 0.85, Sleep-EDF: 87%-80%, 0.79-0.74) compared with the state-of-the-art approaches on various single-channels (F4-EOG (Left), Fpz-Cz and Pz-Oz) in two public datasets with different scoring standards (AASM and R&K), We hope this progress can make clinically practical value in promoting home sleep studies on various home health-care devices.
引用
收藏
页码:555 / 560
页数:6
相关论文
共 50 条
  • [11] Single-channel EEG automatic sleep staging based on transition optimized HMM
    Jing Huang
    Lifeng Ren
    Zhiwei Ji
    Ke Yan
    Multimedia Tools and Applications, 2022, 81 : 43063 - 43081
  • [12] Deep Identity Confusion for Automatic Sleep Staging Based on Single-Channel EEG
    Liu, Yu
    Fan, Ruiting
    Liu, Yucong
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 134 - 139
  • [13] Single-channel EEG automatic sleep staging based on transition optimized HMM
    Huang, Jing
    Ren, Lifeng
    Ji, Zhiwei
    Yan, Ke
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 43063 - 43081
  • [14] SleepNet-Lite: A Novel Lightweight Convolutional Neural Network for Single-Channel EEG-Based Sleep Staging
    Zhou, Huihui
    Liu, Aiping
    Cui, Heng
    Bie, Yuanzhi
    Chen, Xun
    IEEE SENSORS LETTERS, 2023, 7 (02)
  • [15] SingleChannelNet: A model for automatic sleep stage classification with raw single-channel EEG
    Zhou, Dongdong
    Wang, Jian
    Hu, Guoqiang
    Zhang, Jiacheng
    Li, Fan
    Yan, Rui
    Kettunen, Lauri
    Chang, Zheng
    Xu, Qi
    Cong, Fengyu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [16] CausalAttenNet: A Fast and Long-Term-Temporal Network for Automatic Sleep Staging With Single-Channel EEG
    Pan, Jie
    Feng, Yongjie
    Zhao, Pengjun
    Zou, Xiaoyu
    Hou, Aiping
    Che, Xiaoyi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [17] Automatic Sleep Staging in Patients With Obstructive Sleep Apnea Using Single-Channel Frontal EEG
    Lee, Pei-Lin
    Huang, Yi-Hao
    Lin, Po-Chen
    Chiao, Yu-An
    Hou, Jen-Wen
    Liu, Hsiang-Wen
    Huang, Ya-Ling
    Liu, Yu-Ting
    Chiueh, Tzi-Dar
    JOURNAL OF CLINICAL SLEEP MEDICINE, 2019, 15 (10): : 1411 - 1420
  • [18] Automatic sleep staging by a hybrid model based on deep 1D-ResNet-SE and LSTM with single-channel raw EEG signals
    Li, Weiming
    Gao, Junhui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [19] Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
    Liu, Cong
    Tan, Bin
    Fu, Mingyu
    Li, Jinlian
    Wang, Jun
    Hou, Fengzhen
    Yang, Albert
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 567
  • [20] A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-Channel EEG
    Bao, Jiameng
    Wang, Guangming
    Wang, Tianyu
    Wu, Ning
    Hu, Shimin
    Lee, Won Hee
    Lo, Sio-Long
    Yan, Xiangguo
    Zheng, Yang
    Wang, Gang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6641 - 6652