Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering

被引:88
|
作者
Qiu, W. T. [1 ]
Pang, Y. [1 ]
Xiao, Z. [1 ]
Li, Z. [1 ,2 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Minist Educ, Key Lab Nonferrous Met Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
关键词
W-Cu alloy; Mechanical alloying; High pressure sintering; Densification mechanism; LIQUID-PHASE; DENSIFICATION; COMPOSITE; POWDER; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.ijrmhm.2016.07.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
W-20 wt%Cu alloy, with a high sintering density of 99.2% theoretical density (%TD), ultrafine grain size of 500 nm, and hardness of 310 HV, was fabricated by mechanical alloying and high pressure sintering (HPS). The changes of morphology and structural evolution of W-Cu powders during mechanical alloying process were observed and studied, and the effects of temperature and pressure on the density of sintered compacts were studied. Results showed that nanostructured (NS) mechanical alloyed (MA) W-Cu powders were obtained after a 40 h milling at a milling speed of 400 rpm, and the W-Cu alloy had nanocrystalline structure and shape retention with nearly full densification when the HPS of NS MA W-Cu powders was carried out at 1050 degrees C with a pressure of 40 MPa. The densification behavior of NS MAW-Cu powders during HPS was also studied, including a nanosintering with-in the MA powders during heating and a global rearrangement and sintering when an external pressure was applied. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [31] Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering
    Nandini Singh
    Yagnesh Shadangi
    G. Suryaprakash Goud
    Vivek Kumar Pandey
    Vikas Shivam
    Nilay Krishna Mukhopadhyay
    Transactions of the Indian Institute of Metals, 2021, 74 : 2203 - 2219
  • [32] Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering
    Singh, Nandini
    Shadangi, Yagnesh
    Goud, G. Suryaprakash
    Pandey, Vivek Kumar
    Shivam, Vikas
    Mukhopadhyay, Nilay Krishna
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2021, 74 (09) : 2203 - 2219
  • [33] The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering
    Moravcik, Igor
    Kubicek, Antonin
    Moravcikova-Gouvea, Larissa
    Adam, Ondrej
    Kana, Vaclav
    Pouchly, Vaclav
    Zadera, Antonin
    Dlouhy, Ivo
    METALS, 2020, 10 (09) : 1 - 15
  • [34] Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy
    Wang, Chao
    Ji, Wei
    Fu, Zhengyi
    ADVANCED POWDER TECHNOLOGY, 2014, 25 (04) : 1334 - 1338
  • [35] Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming
    Tang, Huaguo
    Cheng, Zhiqiang
    Liu, Jianwei
    Ma, Xianfeng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 550 : 51 - 54
  • [36] Non-equilibrium W-Cu system alloy powder and bulk body prepared by mechanical alloying and shock compression
    Mashimo, T
    Huang, XS
    Tashiro, S
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (12) : 1051 - 1054
  • [37] Preparation and properties of ultrafine-grained W-Cu composites reinforced with tungsten fibers
    Zhuo, Longchao
    Zhang, Yiheng
    Zhao, Zhao
    Luo, Bin
    Chen, Qiuyu
    Liang, Shuhua
    MATERIALS LETTERS, 2019, 243 : 26 - 29
  • [38] High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy
    Kilmametov, A.
    Kulagin, R.
    Mazilkin, A.
    Seils, S.
    Boll, T.
    Heilmaier, M.
    Hahn, H.
    SCRIPTA MATERIALIA, 2019, 158 : 29 - 33
  • [39] Microstructures and properties of W-Cu functionally graded composite coatings on copper substrate via high-energy mechanical alloying method
    Meng, Yunfei
    Zhang, Jiaping
    Duan, Cuiyuan
    Chen, Cheng
    Feng, Xiaomei
    Shen, Yifu
    ADVANCED POWDER TECHNOLOGY, 2015, 26 (02) : 392 - 400
  • [40] Fabrication of W-Cu nano-crystalline composite precursor powders by mechanical alloying
    Zhu Yongbing
    Shen Yifu
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 (06) : 1091 - 1094