Reciprocal n-Body Collision Avoidance

被引:0
|
作者
van den Berg, Jur [1 ]
Guy, Stephen J. [1 ]
Lin, Ming [1 ]
Manocha, Dinesh [1 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
来源
ROBOTICS RESEARCH | 2011年 / 70卷
关键词
OBSTACLE AVOIDANCE;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace. In our formulation, each robot acts fully independently, and does not communicate with other robots. Based on the definition of velocity obstacles [5], we derive sufficient conditions for collision-free motion by reducing the problem to solving a low-dimensional linear program. We test our approach on several dense and complex simulation scenarios involving thousands of robots and compute collision-free actions for all of them in only a few milliseconds. To the best of our knowledge, this method is the first that can guarantee local collision-free motion for a large number of robots in a cluttered workspace.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [41] Chaos in N-body systems
    Boccaletti, D
    Pucacco, G
    PLANETARY AND SPACE SCIENCE, 1998, 46 (11-12) : 1557 - 1566
  • [42] INVARIANCE AND N-BODY PROBLEM
    LOGAN, JD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) : 191 - 197
  • [43] N-BODY RELATIVISTIC SYSTEMS
    DROZVINCENT, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (22): : 1045 - 1048
  • [44] N-body simulations of γ gravity
    dos Santos, Marcelo Vargas
    Winther, Hans A.
    Mota, David F.
    Waga, Ioav
    ASTRONOMY & ASTROPHYSICS, 2016, 587
  • [45] The quantum N-body problem
    Hunziker, W
    Sigal, IM
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) : 3448 - 3510
  • [46] N-body resolvent estimates
    Gerard, C
    Isozaki, H
    Skibsted, E
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (01) : 135 - 160
  • [47] The multigrid N-body solver
    Hardy, DJ
    COMPUTATIONAL SCIENCE -- ICCS 200, PROCEEDINGS PT 2, 2001, 2074 : 1067 - 1067
  • [48] Direct N-body simulations
    Spurzem, Rainer
    Journal of Computational and Applied Mathematics, 1999, 109 (01): : 407 - 432
  • [49] Constrained n-Body Problems
    Szuminski, Wojciech
    Przybylska, Maria
    APPLIED NON-LINEAR DYNAMICAL SYSTEMS, 2014, 93 : 305 - 317
  • [50] Relativistic N-body models
    Klink, WH
    Polyzou, WN
    PHYSICAL REVIEW C, 1996, 54 (03): : 1189 - 1207