ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE PRANDTL BOUNDARY LAYER EQUATIONS

被引:0
|
作者
Kukavica, Igor [1 ]
Vicol, Vlad [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Boundary layer; Prandtl equation; well-posedness; real-analyticity; matched asymptotics; inviscid limit; NAVIER-STOKES EQUATIONS; ZERO VISCOSITY LIMIT; EULER EQUATIONS; INVISCID LIMIT; HALF-SPACE; FLOW; SINGULARITY; POSEDNESS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the local well-posedness of the Prandtl boundary layer equations. Using a new change of variables we allow for more general data than previously considered, that is, we require the matching at the top of the boundary layer to beat a polynomial rather than exponential rate. The proof is direct, via analytic energy estimates in the tangential variables.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 50 条