Anderson localization for two interacting quasiperiodic particles

被引:17
|
作者
Bourgain, Jean [1 ]
Kachkovskiy, Ilya [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
LATTICE SCHRODINGER-OPERATORS; STATES;
D O I
10.1007/s00039-019-00478-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a system of two discrete quasiperiodic 1D particles as an operator on 2(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.
引用
收藏
页码:3 / 43
页数:41
相关论文
共 50 条
  • [41] Breakdown of Anderson localization of interacting quantum bright solitons in a disorder potential
    Plodzien, Marcin
    Sacha, Krzysztof
    PHYSICAL REVIEW A, 2012, 86 (03)
  • [42] Anderson localization of bogolyubov quasiparticles in interacting bose-einstein condensates
    Lugan, P.
    Clement, D.
    Bouyer, P.
    Aspect, A.
    Sanchez-Palencia, L.
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [43] Anderson localization of a non-interacting Bose-Einstein condensate
    Roati, Giacomo
    D'Errico, Chiara
    Fallani, Leonardo
    Fattori, Marco
    Fort, Chiara
    Zaccanti, Matteo
    Modugno, Giovanni
    Modugno, Michele
    Inguscio, Massimo
    NATURE, 2008, 453 (7197) : 895 - U36
  • [44] ANDERSON LOCALIZATION FOR A TWO-DIMENSIONAL ROTOR
    DORON, E
    FISHMAN, S
    PHYSICAL REVIEW LETTERS, 1988, 60 (10) : 867 - 870
  • [45] Quantum Fisher information and the localization properties of two interacting particles in one-dimensional systems
    Liu, X. M.
    Gao, G. J.
    Zhang, Y. M.
    Liu, J-M
    SOLID STATE COMMUNICATIONS, 2018, 279 : 12 - 16
  • [46] Taming two interacting particles with disorder
    Thongjaomayum, Diana
    Andreanov, Alexei
    Engl, Thomas
    Flach, Sergej
    PHYSICAL REVIEW B, 2019, 100 (22)
  • [47] Two interacting particles in the harper model
    Shepelyansky, DL
    PHYSICAL REVIEW B, 1996, 54 (21): : 14896 - 14898
  • [48] Two interacting particles in the Harper model
    Shepelyansky, D. L.
    Physical Review B: Condensed Matter, 1996, 54 (21):
  • [49] Two interacting particles in an external potential
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 2004, 98 : 1214 - 1221
  • [50] Two interacting particles in an external potential
    Ovchinnikov, YN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 98 (06) : 1214 - 1221