Anderson localization for two interacting quasiperiodic particles

被引:17
|
作者
Bourgain, Jean [1 ]
Kachkovskiy, Ilya [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
LATTICE SCHRODINGER-OPERATORS; STATES;
D O I
10.1007/s00039-019-00478-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a system of two discrete quasiperiodic 1D particles as an operator on 2(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.
引用
收藏
页码:3 / 43
页数:41
相关论文
共 50 条
  • [1] Anderson localization for two interacting quasiperiodic particles
    Jean Bourgain
    Ilya Kachkovskiy
    Geometric and Functional Analysis, 2019, 29 : 3 - 43
  • [2] Anderson localization for two interacting electrons in a disordered chain
    Evangelou, SN
    Xiong, SJ
    Economou, EN
    PHYSICAL REVIEW B, 1996, 54 (12) : 8469 - 8473
  • [3] From topological phase to transverse Anderson localization in a two-dimensional quasiperiodic system
    Cheng, Shujie
    Asgari, Reza
    Xianlong, Gao
    PHYSICAL REVIEW B, 2023, 108 (02)
  • [4] Localization of interacting Fermi gases in quasiperiodic potentials
    Pilati, Sebastiano
    Varma, Vipin Kerala
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [5] On quasiperiodic beam of interacting particles dynamics modeling
    Rubtsova, I. D.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (01): : 104 - 119
  • [6] Floquet Anderson localization of two interacting discrete time quantum walks
    Malishava, Merab
    Vakulchyk, Ihor
    Fistul, Mikhail
    Flach, Sergej
    PHYSICAL REVIEW B, 2020, 101 (14)
  • [7] Two interacting electrons in a quasiperiodic chain
    Evangelou, SN
    Katsanos, DE
    PHYSICAL REVIEW B, 1997, 56 (20): : 12797 - 12804
  • [8] Superfluidity and Anderson localisation for a weakly interacting Bose gas in a quasiperiodic potential
    X. Deng
    R. Citro
    E. Orignac
    A. Minguzzi
    The European Physical Journal B, 2009, 68 : 435 - 443
  • [9] Superfluidity and Anderson localisation for a weakly interacting Bose gas in a quasiperiodic potential
    Deng, X.
    Citro, R.
    Orignac, E.
    Minguzzi, A.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 68 (03): : 435 - 443
  • [10] Anderson Localization of Composite Particles
    Suzuki, Fumika
    Lemeshko, Mikhail
    Zurek, Wojciech H.
    Krems, Roman, V
    PHYSICAL REVIEW LETTERS, 2021, 127 (16)