Adjusting for selection bias in assessing treatment effect estimates from multiple subgroups

被引:2
|
作者
Glimm, Ekkehard [1 ,2 ]
机构
[1] Novartis Pharma AG, Novartis Campus, CH-4056 Basel, Switzerland
[2] Otto von Guericke Univ, Inst Biometry & Med Informat, Magdeburg, Germany
关键词
selection bias; shrinkage estimation; simultaneous confidence intervals; subpopulations; CONFIDENCE-INTERVALS; UNBIASED ESTIMATION; CLINICAL-TRIALS; DESIGNS; BAYES;
D O I
10.1002/bimj.201800097
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper discusses a number of methods for adjusting treatment effect estimates in clinical trials where differential effects in several subpopulations are suspected. In such situations, the estimates from the most extreme subpopulation are often overinterpreted. The paper focusses on the construction of simultaneous confidence intervals intended to provide a more realistic assessment regarding the uncertainty around these extreme results. The methods from simultaneous inference are compared with shrinkage estimates arising from Bayesian hierarchical models by discussing salient features of both approaches in a typical application.
引用
收藏
页码:216 / 229
页数:14
相关论文
共 50 条
  • [31] Treatment Effect Estimates From Pilot Trials Are Unreliable
    Troy, Jesse D.
    Neely, Megan L.
    Pomann, Gina-Maria
    Grambow, Steven C.
    Samsa, Gregory P.
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2023, 66 (06) : E672 - E686
  • [32] A simple approximation to bias in the genetic effect estimates when multiple disease states share a clinical diagnosis
    Lobach, Iryna
    Kim, Inyoung
    Alekseyenko, Alexander
    Lobach, Siarhei
    Zhang, Li
    GENETIC EPIDEMIOLOGY, 2019, 43 (05) : 522 - 531
  • [33] FINDING TREATMENT EFFECTS WITHIN SUBGROUPS WHEN USING THE PROPENSITY SCORE TO CONTROL FOR SELECTION BIAS: A MONTE CARLO SIMULATION STUDY
    van Eeren, H.
    Spreeuwenberg, M. D.
    van Manen, J. G.
    de Rooij, M.
    Stijnen, T.
    Busschbach, J.
    VALUE IN HEALTH, 2011, 14 (07) : A235 - A235
  • [34] Assessing the properties of patient-specific treatment effect estimates from causal forest algorithms under essential heterogeneity
    Brooks, John M.
    Chapman, Cole G.
    Chen, Brian K.
    Floyd, Sarah B.
    Hikmet, Neset
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [35] Assessing the properties of patient-specific treatment effect estimates from causal forest algorithms under essential heterogeneity
    John M. Brooks
    Cole G. Chapman
    Brian K. Chen
    Sarah B. Floyd
    Neset Hikmet
    BMC Medical Research Methodology, 24
  • [36] SURGICAL LIGATION OF PATENT DUCTUS ARTERIOSUS AND MORTALITY/MORBIDITY IN PRETERM INFANTS: REGRESSION AND PROPENSITY SCORE ANALYSES ADJUSTING FOR TREATMENT SELECTION BIAS
    Mirea, L.
    Shah, P. S.
    Allen, A. C.
    Sankaran, K.
    Ohlsson, A.
    Seshia, M.
    Aziz, K.
    Lee, S. K.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 173 : S217 - S217
  • [37] Bias from farmer self-selection in genetically modified crop productivity estimates: Evidence from Indian data
    Crost, Benjamin
    Shankar, Bhavani
    Bennett, Richard
    Morse, Stephen
    JOURNAL OF AGRICULTURAL ECONOMICS, 2007, 58 (01) : 24 - 36
  • [38] Survivor treatment selection bias in observational studies: Examples from the AIDS literature
    Glesby, MJ
    Hoover, DR
    ANNALS OF INTERNAL MEDICINE, 1996, 124 (11) : 999 - 1005
  • [39] ASSESSING SELECTION BIAS IN REGRESSION COEFFICIENTS ESTIMATED FROM NONPROBABILITY SAMPLES WITH APPLICATIONS TO GENETICS AND DEMOGRAPHIC SURVEYS
    West, Brady T.
    Little, Roderick J.
    Andridge, Rebecca R.
    Boonstra, Philip S.
    Ware, Erin B.
    Pandit, Anita
    Alvarado-Leiton, Fernanda
    ANNALS OF APPLIED STATISTICS, 2021, 15 (03): : 1556 - 1581
  • [40] SHORT-TERM AND LONG-TERM OUTCOMES FOR VIDEO-ASSISTED THORACOSCOPIC SURGERY AND OPEN LOBECTOMY: RESULTS FROM STATISTICAL ANALYSIS ADJUSTING FOR TREATMENT SELECTION BIAS
    Wang, X.
    Lian, H.
    Nwogu, C. E.
    D'Cunha, J.
    Pang, H.
    EUROPEAN JOURNAL OF CANCER, 2015, 51 : E26 - E26