Adjusting for selection bias in assessing treatment effect estimates from multiple subgroups

被引:2
|
作者
Glimm, Ekkehard [1 ,2 ]
机构
[1] Novartis Pharma AG, Novartis Campus, CH-4056 Basel, Switzerland
[2] Otto von Guericke Univ, Inst Biometry & Med Informat, Magdeburg, Germany
关键词
selection bias; shrinkage estimation; simultaneous confidence intervals; subpopulations; CONFIDENCE-INTERVALS; UNBIASED ESTIMATION; CLINICAL-TRIALS; DESIGNS; BAYES;
D O I
10.1002/bimj.201800097
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper discusses a number of methods for adjusting treatment effect estimates in clinical trials where differential effects in several subpopulations are suspected. In such situations, the estimates from the most extreme subpopulation are often overinterpreted. The paper focusses on the construction of simultaneous confidence intervals intended to provide a more realistic assessment regarding the uncertainty around these extreme results. The methods from simultaneous inference are compared with shrinkage estimates arising from Bayesian hierarchical models by discussing salient features of both approaches in a typical application.
引用
收藏
页码:216 / 229
页数:14
相关论文
共 50 条
  • [1] Treatment effect adjusting for baseline covariates: a curious case of selection bias
    Sinha, Arijit
    TRIALS, 2019, 20
  • [2] Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates
    Myers, Jessica A.
    Gagne, Joshua J.
    Rassen, Jeremy A.
    Schneeweiss, Sebastian
    Hubrechts, Krista F.
    Rothman, Kenneth J.
    Joffe, Marshall M.
    Glynn, Robert J.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S2 - S2
  • [3] Effects of Adjusting for Instrumental Variables on Bias and Precision of Effect Estimates
    Myers, Jessica A.
    Rassen, Jeremy A.
    Gagne, Joshua J.
    Huybrechts, Krista F.
    Schneeweiss, Sebastian
    Rothman, Kenneth J.
    Joffe, Marshall M.
    Glynn, Robert J.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2011, 174 (11) : 1213 - 1222
  • [4] Adjusting for selection bias in assessing the relationship between sibship size and cognitive performance
    Ghilagaber, Gebrenegus
    Wanstrom, Linda
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2015, 178 (04) : 925 - 944
  • [5] THE EFFECT OF ADJUSTING FOR YEARLY SELECTION TRENDS ON VARIANCE COMPONENT ESTIMATES
    GEARHEART, WW
    DAVIS, ME
    HARVEY, WR
    CANADIAN JOURNAL OF ANIMAL SCIENCE, 1989, 69 (02) : 487 - 490
  • [6] Adjusting treatment effect estimates by post-stratification in randomized experiments
    Miratrix, Luke W.
    Sekhon, Jasjeet S.
    Yu, Bin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (02) : 369 - 396
  • [7] Adjusting for Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies
    Aschard, Hugues
    Vilhjalmsson, Bjarni J.
    Joshi, Amit D.
    Price, Alkes L.
    Kraft, Peter
    AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (02) : 329 - 339
  • [9] A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting
    Freeman, P. E.
    Izbicki, R.
    Lee, A. B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (04) : 4556 - 4565
  • [10] Assessing the Sensitivity of Meta-analysis to Selection Bias: A Multiple Imputation Approach
    Carpenter, James
    Ruecker, Gerta
    Schwarzer, Guido
    BIOMETRICS, 2011, 67 (03) : 1066 - 1072